LARGE-EDDY SIMULATION and LAGRANGIAN TRACKING of a DIFFUSER PRECEDED BY A TURBULENT PIPE Fabio Sbrizzaia, Roberto Verziccob and Alfredo Soldatia a Università degli studi di Udine: Centro Interdipartimentale di Fluidodinamica e Idraulica Dipartimento di Energetica e Macchine b Politecnico di Bari: Dipartimento di Ingegneria Meccanica e Gestionale Centre of Excellence for Computational Mechanics Sep 07, 2006 LARGE-EDDY SIMULATION OF THE FLOW FIELD • Flow exits from a turbulent pipe and enters the diffuser. • Kelvin-Helmholtz vortex-rings shed periodically at the nozzle. • Pairing/merging produces 3D vorticity characterized by different scale structures. NUMERICAL METHODOLOGY • Two parallel simulations: • Turbulent pipe DNS • LES of a largeangle diffuser • DNS velocity field interpolated and supplied to LES inlet. • Complex shape walls modeled through the immersedboundaries (Fadlun et al., 2000) l=10 r r L=8 r LAGRANGIAN PARTICLE TRACKING • O(105) particles having diameter of 10, 20, 50 and 100 mm with density of 1000 kg/m3 • Tracked using a Lagrangian reference frame. • Particles rebound perfectly on the walls. • How to model immersed boundaries during particle tracking? BLUE = particles released in the boundary layer RED = particles released in the inner flow PARTICLE REBOUND Particles rebound on a curved 3D wall. curve equation: z z1 r ( z, ) ( R2 R1 ) sin R1 2 z2 z1 LOCAL REFERENCE FRAME • To properly model particle rebound within Lagrangian tracking, we use a local reference frame X-Y. • X-axis is tangent to the curve, Y is perpendicular. • Particle bounces back symmetrically with respect to surface normal. • X-Y reference frame is rotated with respect to r-z by angle q. FRAME ROTATION z z1 dr R2 R1 tan cos dz z2 z1 2 2 z2 z1 1. Calculation of angle q: 2. Rotation matrix. Position: X sinq cosq r = x Rc Y cosq -sinq z Velocity: Ux sinq cosq Ur cosq -sinq Uz u x R uc Uy = PARTICLE REFLECTION = reflection coefficient ( = 1 perfect rebound) xQ ' Q' yQ ' u x ,Q ' uQ ' u y ,Q ' y Q ' u y ,Q ' xQ Q yQ u x ,Q uQ u y ,Q yQ " u y ,Q" xQ ' Q" yQ ' uQ " u x ,Q ' u y ,Q ' FINALLY… • Particle coordinates and velocities are rotated back by the inverse (transposed) of the rotation matrix. • That’s it! rQ ' T R c zQ ' u r ,Q ' T R uc u z ,Q '