From metric homotopies to nD persistence Massimo Ferri Mathematics Department Univ. of Bologna http://www.dm.unibo.it/~ferri/e.htm [email protected] From metric homotopies to nD persistence • • • • • • The University of Bologna Metric homotopies Size Functions and Natural Pseudodistance Applications nD persistence Work in progress and conclusions Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 2/57 The University of Bologna • Oldest in Europe? (Competitor: La Sorbonne) • Active at the end of the 11th century as a Law school • 1158: formal recognition by Emperor Frederick I Barbarossa Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 3/57 The University of Bologna Some “visiting professors”: • Dante Alighieri • Thomas Becket • Erasmus of Rotterdam Thomas Becket Ljubljana, 12/4/2012 A good student: • Nicolaus Copernicus M. Ferri – From metric homotopies to nD persistence 4/57 The University of Bologna Mathematics in Bologna: • Luca Pacioli (14th c.): arithmetic and geometry • Rafael Bombelli (16th c.): invention of complex #’s • Scipione Dal Ferro, Gerolamo Cardano, Ludovico Ferrari (16th c.): 3rd and 4th degree formulas • Bonaventura Cavalieri, Pietro Mengoli (17th c.): early integral calculus • Maria Gaetana Agnesi (18th c.): analytical geometry • Luigi Cremona, Eugenio Beltrami, Beniamino Segre (19th-20th c.): algebraic geometry • Cesare Arzela`, Leonida Tonelli (20th c.): analysis Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 5/57 From metric homotopies to nD persistence • • • • • • The University of Bologna Metric homotopies Size Functions and Natural Pseudodistance Applications nD persistence Work in progress and conclusions Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 6/57 Metric homotopies Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 7/57 Metric homotopies Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 8/57 Metric homotopies Two minimal paths… Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 9/57 Metric homotopies …showing the lack of associativity Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 10/57 Metric homotopies • No way of obtaining a group • Just a fake one… A minimal path on a cube … which may be fairly complicated. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 11/57 Metric homotopies My student Patrizio Frosini decided for a totally different approach: Size Functions Frosini, P., Measuring shapes by size functions, Proc. of SPIE, Intelligent Robots and Computer Vision X: Algorithms and Techniques, Boston, MA 1607 (1991). Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 12/57 From metric homotopies to nD persistence • • • • • • The University of Bologna Metric homotopies Size Functions and Natural Pseudodistance Applications nD persistence Work in progress and conclusions Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 13/57 Size Functions and Natural Pseudodistance Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 14/57 Size Functions and Natural Pseudodistance Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 15/57 Size Functions and Natural Pseudodistance Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 16/57 Size Functions and Natural Pseudodistance Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 17/57 Size Functions and Natural Pseudodistance Approximation translates into “blind strips”. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 18/57 Size Functions and Natural Pseudodistance All information carried by a size function can be condensed in the formal series of its cornerpoints The matching distance Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 19/57 Size Functions and Natural Pseudodistance The matching distance between formal series of cornerpoints is stable under perturbation of the measuring function! Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 20/57 Size Functions and Natural Pseudodistance Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 21/57 Size Functions and Natural Pseudodistance It turns out that: i.e. the matching distance between size functions yields a lower bound (and an optimal one!) to the natural pseudodistance. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 22/57 From metric homotopies to nD persistence • • • • • • The University of Bologna Metric homotopies Size Functions and Natural Pseudodistance Applications nD persistence Work in progress and conclusions Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 23/57 Applications • Classification problems: Bologna • • • • Leukocytes Monograms Sketches Melanocytic lesions Genova • • • • Ljubljana, 12/4/2012 Tree leaves Numerals Alphabet of the deaf Cars M. Ferri – From metric homotopies to nD persistence 24/57 Applications Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 25/57 Applications Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 26/57 Applications Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 27/57 Applications Similitudes Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 28/57 Applications Affine transformations Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 29/57 Applications Homographies Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 30/57 Applications naevus melanoma Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 31/57 Applications An image and one of its splittings. The curve of the image (meas. fct.: luminance). Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 32/57 Applications Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 33/57 Applications • Image retrieval Sea fauna Silhouettes Trade marks • “Keypics” Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 34/57 Applications Query 1 2 3 CSS our system CSS our system The challenge of a public database. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 35/57 Applications Query 1 2 3 CSS our system CSS our system The challenge of a public database. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 36/57 Applications Trade marks: two queries and the first eight retrieved images Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 37/57 Applications • We suggest that images on the Internet should be equipped with simplified sketches representing the essentials of the images themselves: keypics. • Keypics should be provided by the image owner or manager. • This graphical indexing might be extended to whole Web pages. • Encoding of keypics should be standard (e.g. in SVG). Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 38/57 Applications A Data Manager might wish to index the image of a saxophone by its geometrical outline, but also (or only) with a musical note. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 39/57 Applications Some different keypic drawing conceptions. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 40/57 Applications A retrieval experiment Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 41/57 Applications A retrieval experiment Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 42/57 From metric homotopies to nD persistence • • • • • • The University of Bologna Metric homotopies Size Functions and Natural Pseudodistance Applications nD persistence Work in progress and conclusions Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 43/57 nD persistence • k-dimensional measuring functions • Higher degree homology Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 44/57 nD persistence k-dimensional measuring functions Frosini, P., Mulazzani, M., Size homotopy groups for computation of natural size distances, Bull. of the Belgian Math. Soc. - Simon Stevin, 6 (1999), 455-464. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 45/57 nD persistence Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 46/57 nD persistence Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 47/57 nD persistence Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 48/57 nD persistence Higher homology modules (persistent homology / size functor) Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 49/57 nD persistence Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 50/57 nD persistence Persistent homology for k-dimensional measuring functions Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 51/57 nD persistence Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 52/57 nD persistence The reduction theorem from k-dimensional to 1dimensional measuring functions - through maxima along admissible pairs - works unaltered also for higher homology modules! Cagliari, F., Di Fabio, B., Ferri, M., One-dimensional reduction of multidimensional persistent homology, Proc. Amer. Math. Soc. 138 (2010), 3003-3017. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 53/57 From metric homotopies to nD persistence • • • • • • The University of Bologna Metric homotopies Size Functions and Natural Pseudodistance Applications nD persistence Work in progress and conclusions Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 54/57 Work in progress and conclusions Present research: • • • • • Search for optimal admissible pairs Better bounds for the natural pseudodistance Algorithms Applications to colour images and 3D meshes New applications to melanoma diagnosis Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 55/57 Work in progress and conclusions The theory of Size Functions is developing along two directions: k-dimensionality and higher homology modules. Together with “concrete” applications in Pattern Recognition, we would like to find contact points with other theoretical domains. Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 56/57 THANK YOU FOR YOUR ATTENTION ! Ljubljana, 12/4/2012 M. Ferri – From metric homotopies to nD persistence 57/57