Monte Carlo simulation of a silicon strip detector response for angiographic applications. First approach. C. Ceballosa, G. Baldazzib, D. Bollinib, A.E.Cabal Rodrígueza, W. Dabrowskic, A.Días Garcíaa, M. Gambaccinid, P. Giubellinoe, M. Gombiab, P. Grybosc, M.Idzikc,e, A. Marzari-Chiesaf, L.M. Montañog, F. Prinoh, L. Ramelloh, M. Sittah, K. Swientekc, A. Taibid, A. Tuffanellid, R. Wheadone, P. Wiacekc a b c d e f g h CEADEN, Havana, Cuba; Dipartimento di Fisica dell’ Università di Bologna and INFN, Bologna, Italy; Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, Cracow, Poland; Dipartamneto di Fisica dell’ Università di Ferrara and INFN, Ferrara, Italy; INFN, Torino, Italy; Dipartimento di Fisica dell’ Università di Torino and INFN, Torino, Italy; CINVESTAV, Mexico City, Mexico, Dipartimento di Scienze e Tecnologie Avanzate dell’ Università del Piemonte Orientale and INFN, Alessandria, Italy ABSTRACT First results of Monte Carlo simulation by MCNP transport code of an experimental facility at Bologna S. Orsola hospital for studying the possible application of a X-Ray detection system based on a silicon strip detector on a dual energy angiography. The quasi-monochromatic X-ray beam with the detector in the edge-on configuration has been used to acquire images of a test object at two different energies (namely 31 and 35 keV) suitable for the K-edge subtraction angiography application. As a test object a Plexiglas step wedge phantom was used. It was 40 mm high and 50 mm wide and with a thickness ranging from 10 mm to 40 mm with three 2mm Aluminum layers on it . Four cylindrical cavities, having a 1 mm diameter, have been drilled and filled, with iodated contrast medium, whose concentration varied from 370 mg/ml to 92 mg/ml. Both the profiles obtained from measurements and the images generated with them where reproduced by computer simulation on a first approach to use this technique as an evaluation tool for future developments on the experimental setup EXPERIMENTAL SETUP MCNP Simulated Geometry DEAD ZONE STRIPS Aluminium Layer PMMA 1 mm Iodine Filled Tube Detector characteristics Strip length 10 mm Thickness 300 m Dead region (edge – on config.) 765 m Strip pitch 100 m Strip width 80 m 400 Photo of the upper-left detector’s corner Channels Conc(I) = 370 mg/ml E = 31.5 KeV Counts / Max.Counts 1,0 Conc(I) = 370 mg/ml 0,8 0,6 E=31.5 KeV 0,4 0,2 Measurement Simulation 0,0 0 50 100 150 200 250 300 350 Strip Number Image obtained from measurements Image obtained from simulation Counts / Max.Counts 1,0 Conc(I) = 370 mg/ml E = 35.5 KeV Conc(I) = 370 mg/ml 0,8 0,6 E=35.5 KeV 0,4 0,2 Measurement Simulation 0,0 0 50 100 150 200 250 300 350 Strip Number Image obtained from measurements Image obtained from simulation ln[count(E=35.5Kev)] - ln[count(E=31.5Kev)] Measurement Simulation Conc(I) = 370 mg/ml 0,2 Conc(I) = 370 mg/ml 0,0 -0,2 K-edge subtraction image: -0,4 -0,6 ln(image35.5) - ln(image31.5) -0,8 -1,0 0 50 100 150 200 250 300 350 Strip Number Image obtained from measurements Image obtained from simulation ln[count(E=35.5Kev)] - ln[count(E=31.5Kev)] Conc(I) = 185 mg/ml 0,2 Measurement Simulation 0,1 Conc(I) = 185 mg/ml 0,0 -0,1 K-edge subtraction image: -0,2 -0,3 ln(image35.5) - ln(image31.5) -0,4 -0,5 -0,6 0 50 100 150 200 250 300 350 Strip Number Image obtained from measurements Image obtained from simulation ln[count(E=35.5Kev)] - ln[count(E=31.5Kev)] Conc(I) = 92 mg/ml 0,2 Measurement Simulation Conc(I) = 92 mg/ml 0,1 0,0 K-edge subtraction image: -0,1 ln(image35.5) - ln(image31.5) -0,2 -0,3 -0,4 0 50 100 150 200 250 300 350 Strip Number Image obtained from measurements Image obtained from simulation