Pinch Technology and optimization of the use of utilities – part one Maurizio Fermeglia [email protected] www.mose.units.it Introduction to HEN Synthesis Unit 1. Introduction: Capital vs. Energy What is an optimal HEN design A Simple Example (Class Exercise 1) Setting Energy Targets Unit 2. The Pinch and MER Design The Heat Recovery Pinch HEN Representation Class Exercise 2 Class Exercises 3 and 4 Unit 3. The Problem Table Unit 4. Loops and Splits Minimum Number of Units by Loop Breaking Class Exercise 5 Stream Split Designs Class Exercise 6 Unit 5. Threshold Problems Class Exercise 7 Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 2 Heat and Power Integration Unit 6. Data Extraction Class Exercise 8 Unit 7. Heat Integration in Design Grand Composite Curve Heat-integrated Distillation Heat Engines Heat Pumps Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 3 Objectives The first part of this three-part Unit on HEN synthesis serves as an introduction to the subject, and covers: The “pinch” The design of HEN to meet Maximum Energy Recovery (MER) targets The use of the Problem Table to systematically compute MER targets Instructional Objectives: Given data on hot and cold streams, you should be able to: Compute the pinch temperatures Compute MER targets Design a simple HEN to meet the MER targets Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 4 UNIT 1: Introduction - Capital vs. Energy The design of Heat Exchanger Networks deals with the following problem: Given: NH hot streams, with given heat capacity flowrate, each having to be cooled from supply temperature THS to targets THT. NC cold streams, with given heat capacity flowrate, each having to be heated from supply temperature TCS to targets TCT. Design: An optimum network of heat exchangers, connecting between the hot and cold streams and between the streams and cold/hot utilities (furnace, hot-oil, steam, cooling water or refrigerant, depending on the required duty temperature). What is optimal? Implies a trade-off between CAPITAL COSTS (Cost of equipment) and ENERGY COSTS (Cost of utilities). Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 6 Impact of process integration Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 7 Example Tout Tout Tout H H H Tin Tin Tin Tin Tin Steam Cooling Water out C T C Tout C Tout Network for minimal equipment cost ? Tout Tin Tout Tout Cooling Water out T Tin Network for minimal energy cost ? Tin Tout Tin Tout Tin Progettazione di processo e di prodotto Steam Tin Tin Trieste lunedì 5 marzo 2012 - slide 8 Numerical Example 150o 100 150o 150o CP = 1.0 300o 300o 500 CP = 1.0 500 CP = 1.0 Cooling Water (90-110oF) 100 100 o CP = 1.0 300 CP = 1.0 Steam (400oF) 100 200o 100 200o 100 200o Design A: (AREA) = 20.4 [ A = Q/UTlm ] 500 150o CP = 1.0 Design B: (AREA) = 13.3 o CP = 1.0 300 CP = 1.0 CP = 1.0 150o 200o 100 300o 200o 100 300o 100 500 CP = 1.0 Progettazione di processo e di prodotto 150o 500 CP = 1.0 200o 500 CP = 1.0 Trieste lunedì 5 marzo 2012 - slide 9 Which option requires more capital? Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 10 Energy efficient process can also be more capital efficient process (saves energy AND capital) Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 11 Energy efficient design reduces investment in the utility infrastructure Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 12 Some Definitions T TT TS TT H CP T TS H Progettazione di processo e di prodotto H = Stream supply temperature (oC) = Stream target temperature (oC) = Stream enthalpy (MW) Cp (MW/ oC) = m = Heat capacity flowrate (MW/ oC) = Stream flowrate specific heat capacity Trieste lunedì 5 marzo 2012 - slide 13 Tmin - Example Tmin = Lowest permissible temperature difference Which of the two counter-current heat exchangers illustrated below violates T 20 oF (i.e. Tmin = 20 oF) ? 20o 100 30o 80o 60o o 50o 10o A 70o 100 60o o 40o 20o B Clearly, exchanger A violates the Tmin constraint. Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 14 Definitions (Cont’d) Exchanger Duty. Data: T1 = 70o OK Hot stream CP = 0.3 MW/ oC Cold stream CP = 0.4 MW/ oC Check: T1 = 40 + (100 - 60)(0.3/0.4) = 70oC 100 60o o 40o OK Q = 0.4(70 - 40) = 0.3(100 - 60) = 12 MW Heat Transfer Area (A): A = Q/(UTlm) Data: Overall heat transfer coefficient, U=1.7 kW/m2 oC (Alternative formulation in terms of film coefficients) Tlm = (30 - 20)/loge(30/20) = 24.66 So, A = Q/(UTlm) = 12000/(1.724.66) = 286.2 m2 Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 15 Pinch technology basics Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 16 Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 17 How can we identify appropriate process design changes? Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 19 Sustainable Development by Process Integration Reduce Environmental Impact Optimise Production Plan Improve Utility System Performance Minimise Operating Cost All Aspects of Debottlenecking Capital Cost Avoidance Energy, Water, Hydrogen Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 23 Introduction to Pinch technology Whenever the design is considered limits exits that constraints the design Mechanical constraints Length and diameter of towers Diameters of heat exchangers Thermodynamic constrains First principles and second principles Close approach in heat exchanger large surface area Reflux ratio close to the minimum number of stages grows When driving force becomes small area becomes large We say that the design has a PINCH Applies to heat and mass In a network (mass or heat) there is a point in which the driving force is minimum PINCH POINT A succesful design involves defining where the pinch is Using the information at the PINCH POINT is named PINCH TECHNOLOGY Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 24 Introduction to Pinch technology Pinch technology applications Both heat and mass transfer New processes Existing processes for retrofitting Pinch technology = optimization For new and existing processes an algorithm is used Design of heat and mass exchanger network … that consumes the minimum amount of utilities HEN (MEN) … that requires the minimum number of equipments (exchangers) MUMNE The solution may not be optimal in the economic sense … it is a starting point close enough to the economic minimum. Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 25 Pinch technology and heat integration Growing importance of heat integration is driving force Formalization of heat integration theory pinch technology Linhoff and Flower Hohman Umeda et al. Douglas Turton et al (text book) Different operative configurations of the same process may result in Same conditions (composition, temperature, pressure, flow rate) Different Fixed capital investment Different cost of utilities Different Net present value Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 26 Class Exercise 1 Tmin = 10 oC H=100 Cond 180o o 60 80o R2 C1 H=160 Reb 100o 130 40o TT (oC) H1 H2 C1 C2 180 130 60 30 80 40 100 120 H (kW) 100 180 160 162 CP (kW/oC) 1.0 2.0 4.0 1.8 Utilities. Steam@150 oC, CW@25oC o H=180 R1 Stream TS (oC) 120o H=162 Design a network of steam heaters, water coolers and exchangers for the process o 30 streams. Where possible, use exchangers in preference to utilities. . Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 28 Setting Energy Targets Cond 60 180o o Summary of proposed design: 100 80o R2 C1 60 H 130 Reb o Steam CW Units 60 kW 18 kW 4 R1 100o Are 60 kW of Steam Necessary? 162 C 18 120 o 30o 40o Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 29 The Temperature-Enthalpy Diagram T T 130oC 200oC 40oC 100oC H=180 One hot stream Progettazione di processo e di prodotto H=300 H H H=100 Two hot streams Trieste lunedì 5 marzo 2012 - slide 30 The Temperature-Enthalpy Diagram C CW Steam Steam T Tmin = 20 10 H 120oC 110oC 100oC CW 30 QCmin = 50 H 50 QHmin = 70 Correlation between Tmin, QHmin and QCmin More in, More out! QHmin + x QCmin + x Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 31 The Composite Curve Hot Composite Curve H interval o 180 C H=100 Cond o 180 60o 80o R2 C1 50 CP=1.0 130oC 150 o 80 C CP=2.0 o 40 C 80 H=160 Reb 100o 40o Progettazione di processo e di prodotto 180oC o 130o H=180 R1 120o 130 C H=162 CP=1.0 50 CP=3.0 150 o 80 C 30o o 40 C CP=2.0 80 Trieste lunedì 5 marzo 2012 - slide 32 The Composite Curve (Cont’d) Cold Composite Curve H interval o 120 C H=100 Cond 100oC 180o o 60 36 CP=1.8 232 80o 60oC R2 C1 CP=4.0 30oC H=160 Reb 100o 130o H=180 o 40 Progettazione di processo e di prodotto 120oC R1 o CP=1.8 100 C 120o H=162 CP=5.8 60oC o 30 30oC CP=1.8 54 36 232 54 Trieste lunedì 5 marzo 2012 - slide 33 The Composite Curve (Cont’d) T QHmin = 54 48 130oC 100oC o 80 C o T = 20 min Tmin = 10oC C 60oC QQ ==6 12 Cmin Cmin H Result: QCmin and QHmin for desired Tmin MER Target Here, hot pinch is at 70 oC, cold pinch is at 60 oC QHmin = 48 kW and QCmin = 6 kW Method: manipulate hot and cold composite curves until required Tmin is satisfied. This defines hot and cold pinch temperatures. Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 34 UNIT 2: The Pinch QHmin T Heat Source QCmin +x QHmin +x Tmin Heat Sink “PINCH” x H H The “pinch” separates the HEN problem into two parts: Heat sink - above the pinch, where at least QHmin utility must be used Heat source - below the pinch, where at least QCmin utility must be used. Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 35 Significance of the Pinch Do not transfer heat across pinch Do not use cold utilities above the pinch Do not use hot utilities below the pinch Cond 100 Summary of modified design: R2 C1 Steam CW Units ~49 kW ~7 kW 5 R1 Reb H 49 111 62 C 7 Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 36 HEN Representation 100 Cond 60oC 180oC 80oC H1 R2 C1 H2 130oC 100oC 100 C Reb o 130 C 120oC H 49 111 R1 o 120 C C 7 Progettazione di processo e di prodotto 60oC H 49 111 100 30oC 40oC C 7 30oC o 62 40oC 80oC 180oC C1 C2 62 Where is the pinch ? Trieste lunedì 5 marzo 2012 - slide 37 HEN Representation with the Pinch Thot H1 H2 H Thot Thot Tcold Tcold Tcold Tcold C C1 C2 The pinch divides the HEN into two parts: the left hand side (above the pinch) the right hand side (below the pinch) At the pinch, ALL hot streams are hotter than ALL cold streams by Tmin. Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 38 Class Exercise 2 For this network, draw the grid representation Given pinch temperatures at 480 oC /460 oC, and MER targets: QHmin= 40, QCmin= 106, redraw the network separating the sections above and below the pinch. Why is QH > QHmin ? H1 320o C1 240 C2 H2 500oC 320oC Progettazione di processo e di prodotto 170 50 500o 320o CP = 1.0 CP = 1.5 CW 290o 200o CP = 1.8 CP = 2.0 320 C 480oC 100 S 116 o H1 480o 210 o 140o H2 CP 200oC 1.8 290oC 2.0 240oC 140oC C1 1.0 C2 1.5 Trieste lunedì 5 marzo 2012 - slide 39 Class Exercise 2 - Solution H1 320o C1 240 C2 480o 210 o 140o H2 100 S 50 170 500o 320o CP = 1.0 CP = 1.5 116 CW 290o 200o CP = 1.8 CP = 2.0 CP 320oC H1 H2 500oC H 40 200oC 1.8 480oC 290oC 460oC 240oC H 10 210 320oC Progettazione di processo e di prodotto C 116 140oC 170 2.0 C1 1.0 C2 1.5 100 Trieste lunedì 5 marzo 2012 - slide 40 Class Exercise 2 - Solution (Cont’d) This can be fixed by reducing the cooling duty by 10 units, and eliminate the excess 10 units of heating below the pinch. CP H1 H2 320oC C 116 106 480oC 500oC 320oC H H 40 10 1.8 290oC 2.0 240oC 460o 450 210 220 140oC 170 160 Progettazione di processo e di prodotto 200oC C1 1.0 C2 1.5 100 110 Trieste lunedì 5 marzo 2012 - slide 41 Design for Maximum Energy Recovery(MER) Example CP 170oC 60oC 3.0 150oC 30oC 1.5 H1 H2 135oC 140oC 20oC 80oC C1 2.0 C2 4.0 Step 1: MER Targeting. Pinch at 90o (Hot) and 80o (Cold) Energy Targets: Total Hot Utilities: 20 kW Total Cold Utilities: 60 kW Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 42 Design for MER (Cont’d) Step 2: Divide the problem at the pinch CP 170oC 90oC 90oC 60oC 3.0 150oC 90oC 90oC 30oC 1.5 80oC 80oC 20oC H1 H2 135oC 140oC Progettazione di processo e di prodotto 80oC C2 C1 2.0 4.0 Trieste lunedì 5 marzo 2012 - slide 43 Design for MER (Cont’d) Step 3: Design hot-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately above the pinch, pair up streams such that: CPHOT CPCOLD (This ensures that TH TC Tmin) CP H1 3.0 H2 1.5 C1 2.0 C2 4.0 Tmin Meets Tmin Violates Tminconstraint constraint Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 44 Design for MER (Cont’d) Step 3 (Cont’d): Complete hot-end design, by ticking-off streams. CP H1 QHmin = 20 kW H2 170 150o 135o 140o o H 20 90o 3.0 90o 80o 90 80o 1.5 C1 2.0 C2 4.0 240 Add heating utilities as needed (MER target) Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 45 Design for MER (Cont’d) Step 4: Design cold-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately above the pinch, pair up streams such that: CPHOT CPCOLD (This ensures that TH TC Tmin) CP H1 3.0 H2 1.5 C1 Tmin 2.0 Violates Meets T T constraint constraint minmin Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 46 Design for MER (Cont’d) Step 4 (Cont’d): Complete cold-end design, by ticking-off streams. CP H1 H2 90o 60o 90o C 60 80o 35o 90 30o 20o C1 3.0 1.5 QCmin = 60 kW 2.0 30 Add cooling utilities as needed (MER target) Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 47 Design for MER (Cont’d) Completed Design: CP H1 H2 170o 90o 150o 135o H 140o 60o 90o 20 90 30o 70o 80o 125o C 60 20o 35o 90 30 3.0 80o 1.5 C1 2.0 C2 4.0 240 Note that this design meets the MER targets: QHmin = 20 kW and QCmin = 60 kW Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 48 Design for MER (Cont’d) Design for MER - Summary: MER Targeting. Define pinch temperatures, Qhmin and QCmin Divide problem at the pinch Design hot-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately above the pinch, pair up streams such that: CPHOT CPCOLD. “Tick off” streams in order to minimize costs. Add heating utilities as needed (up to QHmin). Do not use cold utilities above the pinch. Design cold-end, starting at the pinch: Pair up exchangers according to CP-constraints. Immediately below the pinch, pair up streams such that: CPHOT CPCOLD. “Tick off” streams in order to minimize costs. Add heating utilities as needed (up to QCmin). Do not use hot utilities below the pinch. Done! Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 49 Class Exercise 3 Stream TS (oC) TT (oC) H1 H2 C1 C2 180 130 60 30 80 40 100 120 H (kW) 100 180 160 162 CP (kW/oC) 1.0 2.0 4.0 1.8 Tmin = 10 oC. - Pinch Temperature 70° - 60° Utilities: Steam@150 oC, CW@25oC Design a network of steam heaters, water coolers and exchangers for the process streams. Where possible, use exchangers in preference to utilities. CP H1 QHmin=48 H2 180oC 130oC 100oC 120oC 40 8 Progettazione di processo e di prodotto 80oC 80oC 70oC 43oC o 60 C H 120 60oC H 100 1.0 40 C o C 6 2.0 QCmin=6 o 60 C 30oC C1 4.0 C2 1.8 54 Trieste lunedì 5 marzo 2012 - slide 50 UNIT 3: The Problem Table Example: H Stream TS (oF) TT (oF) (kBtu/h) (kBtu/h oF) H1 H2 C1 C2 260 250 120 180 160 130 235 240 3000 1800 2300 2400 30 15 20 40 CP Tmin = 10 oF. Step 1: Temperature Intervals (subtract Tmin from hot temperatures) Temperature intervals: 250F 240F 235F 180F 150F 120F Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 51 UNIT 3: The Problem Table (Cont’d) Step 2: Interval heat balances For each interval, compute: Hi = (Ti Ti+1)(CPHot CPCold ) Progettazione di processo e di prodotto Interval Ti Ti Ti+1 CPHot CPCold Hi 1 2 3 4 5 6 250 240 235 180 150 120 10 5 55 30 30 30 5 15 25 5 300 25 825 750 150 Trieste lunedì 5 marzo 2012 - slide 52 UNIT 3: The Problem Table (Cont’d) Step 3: Form enthalpy cascade. QH Assume QH = 0 Eliminate infeasible (negative) heat transfer QH = 500 o T1 = 250 F H = 300 Q1 300 800 325 825 -500 0 250 750 100 600 T2 = 240oF H = 25 Q2 o T3 = 235 F H = -825 Q3 T4 = 180oF H = 750 This defines: Cold pinch temp. = 180 oF QHmin = 500 kBtu/h QCmin = 600 kBtu/h Q4 T5 = 150oF H = -150 QC o T6 = 120 F Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 53 Class Exercise 4 - Now try again! Stream TS (oC) TT (oC) H1 H2 C1 C2 180 130 60 30 80 40 100 120 H (kW) 100 180 160 162 CP (kW/oC) 1.0 2.0 4.0 1.8 Tmin = 10 oC. Calculate the Problem Table. Predict QHmin and QCmin. Draw the Enthalpy Cascade. Step 1: Temperature Intervals (subtract Tmin from hot temperatures) Temperature intervals: Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 54 Class Exercise 4 (Cont’d) Step 2: Interval heat balances For each interval, compute: Hi = (Ti Ti+1)(CPHot CPCold ) Interval Ti Ti Ti+1 CPHot CPCold Hi 1 2 3 4 5 6 Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 55 Class Exercise 4 (Cont’d) Step 3: Form enthalpy cascade. QH Assume QH = 0 Eliminate infeasible (negative) heat transfer QH = T1 = H = Q1 T2 = H = Q2 T3 = H = Q3 T4 = H = This defines: Cold pinch temp. = QHmin = kW QCmin = kW Progettazione di processo e di prodotto Q4 T5 = oC H = QC QC T6 = Trieste lunedì 5 marzo 2012 - slide 56 Introduction to HEN Synthesis - Summary Unit 1. Introduction: Capital vs. Energy What is an optimal HEN design Setting Energy Targets Unit 2. The Pinch and MER Design The Heat Recovery Pinch HEN Representation MER Design: (a) MER Target; (b) Hot- and cold-side designs Unit 3. The Problem Table for MER Targeting Progettazione di processo e di prodotto Trieste lunedì 5 marzo 2012 - slide 57