Conceptions of secondary students on phenomenology of superconduction Marisa Michelini, Lorenzo Santi, Alberto Stefanel Research Unit in Physics Education, DCFA, University of Udine - via delle Scienze 206, 33100 Udine, Italy [email protected], [email protected], [email protected] Introduction Teaching and learning Modern Physics is a challenge for Physics Education research (PE 2000; AJP 2002, Meijer 2005; Johanson, Milstead 2008; Steinberg, Oberem 2000). Nowadays superconductivity can be brought in the educational laboratory both for qualitative exploration, both measurements with sensors interfaced to the computer. In the context of a research project to renew physics curricula introducing modern physics, an educational path for high school was developed to introduce superconductivity, integrating it in the courses of electromagnetism. The educational path implement an IBL approach using a set of handson/minds-on apparatuses designed with simple materials and High Technology (Kedzierska et al. 2010; Michelini, Viola 2011), YBCO samples, USB probe to explore R vs T (Gervasio, Michelini 2010). The rational of the path on Meissner effect for HSS Students Type of school Site grade N class Phy years h per week age N Students s.y. h driver 5) The SC tends to react to an external magnetic field creating a counter field to maintain B=0 inside (Meissner effect). Context 4) The interaction between SC and a magnet do not depend on the pole put close to the surface of the magnet, the equilibrium position is always the same.. N 1) YBCO disc at T=Te: no magnetic properties 2) YBCO at T=TNL: evident levitation of a magnet magnetic properties? 3) Systematic exploration of the interaction of the SC with different magnets and different objects (ferromagnets in primis), with different configurations It always shows repulsive effects close to a magnet: an YBCO at TTNL is diamagnetic. School experimentations 1 Curricolar Sci. Lyceum Pordenone 4 2 4 3 17-18 34 05/06 15 teacher Curricolar Sci. Lyceum Udine 2 2 2 3 15-16 33 05/06 10 teacher Curricolar Tech. Lyceum Udine 5 1 3 3 17-18 25 05/06 14 Prospective teacher Curricolar Tech. Lyceum Scicli (Ragusa) 5 1 3 3 17-18 8 05/06 20 teacher Curricolar Class. Lyceum 5 1 2 2 17-18 5 05/06 20 teacher Curricolar Sci. Lyceum 5 1 3 3 17-18 11 05/06 29 teacher Curricolar Curricolar Sci. Lyceum Sci. Lyceum 5 1-2 2 1 3 3 3 3 17-18 17-18 36 27 05/06 05/06 11 12 teacher teacher Curricolar Sci. Lyceum 5 2 3 3 17-18 63 5/06 8 teacher Curricolar Profession Sc. 1-2 2 2 3 15-16 25 05/06 21 teacher Curricolar Tech. Lyceum 5 1 3 3 18-19 21 06/07 9 teacher Curricolar Profession Ist. 1-2 2 2 3 14-16 25 6/07 21 teacher 14 Curricolar Curricolar Sci. Lyceum Profession Ist. Vibo Valencia (Ragusa) Comiso (Ragusa) Bolzano Modena Tricarico (Matera) Gemona (Udine) Udine Gemona (Udine) Bolzano Bolzano 5 5 2 1 2 2 3 3 15-16 18-19 38 7 6/07 06/07 11 5 teacher teacher 15 Curricolar Tech. Lyceum Palermo 5 3 3 3 17-18 53 06/07 21 teacher 16 Sci. Lyceum Udine 5 6 3 3 07/08 4 Res Different Udine 4-5 40 2-3-5 3 42 08/09 6 Res 18 Project Guidance Sci. Lyceum Pordenone 5 1 5 3 18-19 17-1819 18-19 42 17 Project "Maturità" 2008 Summer School FM 2009 13 08/09 6 Res 19 Sci. Lyceum Tolmezzo 5 1 3 3 18-19 20 08/09 8 teacher 20 Curricular - Lab IDIFO Young 2010 LACOMAS Sci. Lyceum Udine 5 20 3 3 18-19 90 09/10 2 Researcher 21 Curricular - Lab IDIFO Geom. Inst. Milano 3 1 3 3 16-17 20 08/09 9 CP-IDIFO teacher 22 Curricular - Lab IDIFO Profession Ist. Modena 2 1 3 3 15-16 20 0809 9 CP-IDIFO teacher 23 Curricular - Lab IDIFO Sci. Lyceum Bolzano 5 1 3 3 18-19 20 08/09 9 teacher 24 Curricular - Lab IDIFO Tech. Lyceum Treviso 5 1 3 3 18-19 20 08/09 9 CP-IDIFO teacher 25 Curricular - Lab IDIFO Sci. Lyceum Bolzano 5 1 3 3 18-19 15 08/09 4 CP-IDIFO teacher 26 Curricular - Lab IDIFO Sci. Lyceum Milano 5 1 3 3 18-19 15 08/09 6 CP-IDIFO teacher 27 Curricular - Lab IDIFO Different Udine 4-5 20 2-3 3 17-1819 80 10/11 4 Res 28 Curricular - Lab IDIFO Different Cosenza 5 7 3-5 3 18-19 50 10/11 4 Res 29 Sci. Lyceum Crotone 5 3 3 3 18-19 20 10/11 6 Res Different Udine 4-5 9 2-3-5 3 40 10/11 6 Res 31 Curricular - Lab IDIFO Summer School FM 2011 Summer School Pigelleto Different Udine 4-5 40 2-3-5 3 46 10/11 6 Res 32 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 16 11/12 12 Res/teach 33 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 27 12/13 9 Res/teach 34 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 23 12/13 35 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 16 12/13 9 Res/teach 36 Curricular - Lab IDIFO 5 1 3 3 18-19 23 12/13 12 Res/teach 37 Curricular - Lab IDIFO 5 2 3 3 18-19 40 12/13 8 Res/teach 38 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach 39 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach 40 Curricular - PhD Exp Summer School MP 2013 Summer School MP 2014 Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach Different Udine 4-5 36 2-3-5 3 17-19 36 2013 6 Res Different Udine 4-5 36 2-3-5 3 17-19 30 2014 6 Res 2 3 4 5 6 7 8 9 10 11 12 13 30 6) The magnet would be stopped just falling over a conductor with R=0 B=0 Meissner effect 7) Experimental measurement R vs T at phase transition 41 42 Sci. Lyceum Sci. Lyceum Tolmezzo (Udine) Monfalcone (GO) 17-1819 17-1819 Res/teach Research experimentation summary: 14 sites (all around in Italy) 1199 students of 220 classes (last two grade of the Italian High School) Explorative activities (informal learning) 4 contexts, with 715 students) From the test: High School Experimentation in Udine-Salerno-Tolmezzo 122 students (13 grade – 18 aged) 10) From the model of conduction to the model of superconduction: analysis of the energy of the electrons inside of a crystal lattice and Cooper pairs formation 11) persistent currents and pinning effect and the correlated phenomenology (i.e. magnetic suspension, the MAGLEV train model). Tutorials Discussion The students use concepts as field lines, magnetization vector, EM induction, as tools to construct a link between magnetic and electric properties of a SC, describing the phenomenology of the Meissner effect, according to the suggestion of many authors (Essen, Fiolhas 2012). In the phenomenological description of the SC the aim is the recognition of the role of the EM induction. How this state is produced or the phase transition occurs, it is described as results of creation of the Cooper pairs. From research experimentations carried out in different contexts emerges that the majority of students recognize the change in the magnetic properties of the SC under Tc, the B=0 condition, the different nature of the magnetic suspension and the levitation of a magnet on a YBCO. From the tutorial (N=240): according to the observations carried out, which aspects characterize the Meissner effect? A) Existence of Tc and/or repulsion/levitation (21%) B) diamagnetism of YBCO (B=0); B line do not cross the magnet; YBCO screens the magnetic properties) in more than half of cases also Tc (38%) Pre/post test C) R=0, and exist Tc (15%) D) B=0 and R=0 (13%) NA: not answer (12%) REFERENCES • AJP, (2002) Special Issues of Am. J. Phys. 70 (3) • PE (2000) Special Issues of Phys Educ.35 (6) F. Ostermann, F., M. A. Moreira, Updating the physics curriculum in high schools, Revista de Enseñanza de las Ciencias, 3 (2), (2004). pg. 190-201 E. Kedzierska, F. Esquembre, L. Konicek, W. Peeters, A. Stefanel, V. S. Farstad, MOSEM 2 project: Integration of data acquisition, modelling, simulation and animation for learning electromagnetism and superconductivity, Il Nuovo Cimento, 33 C, 3, DOI: 10.1393/ncc/i2010-10616-y, NIFCAS 33(3), (2010), pg. 64-74 T. Greczylo, F. Bouquet, G. Ireson, M. Michelini, V. Engstrøm, High-Tech-kit – the set of advanced activities from the MOSEM project, in Multimedia in Physics Teaching and Learning, Michelini M, Lambourne R, Mathelisch L eds, SIF, Bologna and in Il Nuovo Cimento, 33 C, 3 (DOI 10.1393/ncc/i2010-10621-2) NIFCAS 33(3) 1-238, pp.221-229E. Kedzierska et al., Il Nuovo Cimento, 33 (3) (2010), pg. 65-74. Johansson K E, Milstead D (2008) Phys. Educ. 43, 173-179 Steinberg R. N., Oberem G. E. (2000) JCMST 19 (2) 115-136 H. González-Jorge, G. Domarco (2004). Superconducting cylinders aid in an understanding of current induction, Phys. Educ. 39, 234 A. Stefanel, M. Michelini, L. Santi “High school students analyzing the phenomenology of SC and constructing model of the Meissner effect” Proc. of te WCPE2012, (Pegem, Istanbul, 2014) , pp.1253-1266. • Essén H., Fiolhais N. (2012) A.J.P., 80 (2), 164-169 • F. Erickson “Qualitative research methods for Science Education”.in IHSE. Part 2, ed. by B.J. Fraser, K.G. Tobin, (Kluvier, Dordrecht, 1998), pp. 1155-1174. • H. Niedderer, “Qualitative and quantitative methods of investigating alternative frameworks of students”. Paper presented to the AAPT-AAAS meeting (1989). M. Michelini, L. Santi, A. Stefanel (2014) Basic concept of superconductivity: a path for high school, in Frontiers of Fundamental Physics and Physics Education Research, Burra G. S., Michelini M, Santi L, eds, Book of sel. papers presented in the International Symposium FFP12, Springer, Cham, Heidelberg, NY, Dordrecht, London, [978-3-319-00296-5] pp. 453-460. • • • • N. J. Nersessian. Synthese 80 (1), 163-183, (1989). Marton, F. (1988). In Qualitative res. in educ. ed by B. Sherman & Webb (London: Faler) p 141-161. J. Park, J. Kim,, M. Kim, M. Lee. Int. J. Sci. Educ., 23 12, 1219-1236 (2001). D. N. Perkins, T. A. Grotzer. Models and moves in Proceedings of AERA Conf., New Orleans, LA (2000).