Photodetectors
Lecturer: Mauro Mosca
(www.dieet.unipa.it/tfl)
A.A. 2015-16
University of Palermo –DEIM
Photodetector
Thermal



Thermoelectric
Bolometers
Pyroelectric
Photonic



Photomultipliers
Photoconductors
Photovoltaics
Thermoelectric detectors
- Principle of thermocouples
large
small electrical
thermal
conductivities
minimize Joule
heat
heating
effects
conduction
losses
thermopile
Bolometers
aPt ~ aNi =
= 0.005 K-1
Sensing
element
current flowing SMALL
current must not
raise
temperature
Why?...
too much
Pyroelectric detectors
ferromagnetic material
- lead zirconate
- lithium tantalate
molecules with a permanent electrical dipole
Dispositivi emissivi: catodi
NaKCsSb
# emitted electron
# absorbed photons
(S20)
= quantum yield
lowest value for ef : Caesium (2.1 eV)
Negative Electron Affinity (NEA)
Photomultipliers
+
+++
++
Dynodes (~ 100 V)
++
++
++
++
++
++
++
++
Photoconductive detectors
Photoconductive detectors:
application circuits
VO  VBB
RL
RL  RPC
  Plum
VO  VVBB
BB
se si è interessati
solo alle variazioni
di intensità radiante
RPC
RL
k
RL 
Plum
 RPC
Se RL 
VBB RL
 VBB Plum
k
k

 RL 
Plum
lum
segnale
d’uscita piccolo!
(RL piccola)
scarsa sensibilità!
(RPC piccola)
Photoconductive detectors :
application circuits
Photoconductive detectors :
application circuits
The most common method used to extract the
signal is ?????????????????????????????
to modulate the incident radiation at a specific
frequency
either by placing a mechanical chopper in
front of the sensor
or by electrically modulating the radiation
source
The signal due to radiation is now an AC
signal while the dark current is a DC signal.
The AC signal can be separated from the DC
background signal using an AC amplifier
Photoconductive detectors: gain
I0
x
=
=
Photoconductive detectors: gain
I0
x
photoconductive gain G =
ratio of the rate of flow of electrons per second
to the rate of generation of e--h+ pairs within the
device
Photoconductive detectors: gain
Photoconductive detectors: gain
Se consideriamo che:
V
v  ( e   h ) E  (  e   h )
L
L
t tr 
v
 G
c
t tr
Photoconductive detectors:
response
rg
c
G
ttr
eP  c
I 0

i  G  e  rg WDL  G  e 
WDL 
hD
h t tr
high c
traps or sensitization centres
poor response time
Fotoresistors (LDR)
Large surface
Close electrodes
Photoconductive detectors:
pros and cons
eP  c
i 

h ttr
response
c
ttr
sensitivity
high
low f
Multiple-quantum well (MQW)
detectors
p-n junction detector (photodiode)
- photovoltaic mode
- photoconductive mode
il
I0
Silicon photodiode
oppure…
Silicon photodiode
Silicon photodiode: responsivity
i 
eP  c

h ttr

i e
eG

G 
l
P h
hc
Photodiode materials (near IR)
• Ge
lG = 1.88 m
• InxGa1-xAs (x = 0.53)
lG = 1.68 m
lattice matched to InP
wider
bandgap
with narrow bandgap materials:
Why not homojunctions?
- low breakdown voltages
- large reverse leakage current
Response time of photodiodes
• transit time accross the depletion region
• junction capacitance effects
 is minimized…
Response time of photodiodes
• carrier diffusion
Noise in photodiodes
Schottky photodiodes
migliore risposta
a l metallo
più corte
fotoeccitazione
elettroni
l più lunghe
Metal-semiconductor-metal (MSM)
photodetector
capacità più piccole
dispositivi più veloci
Avalanche photodetectors (APD)
The guard ring structure is a low doping region where depletion region
extends an appreciable distance into it
In the vicinity of guard ring the total depletion layer is greater (hence the
maximum electric field is lower) than in the central region
reduced breakdown
no current leakage fron the edge
Phototransistor
VCB < 0
Maggiore sensibilità (mA)
ma…
IB
IE = b IB
Minore velocità
(s contro i ns dei fotodiodi)
Charge-Coupled Devices
(CCD)
Charge-Coupled Devices
(CCD)
Charge-Coupled Devices
(CCD)
CCD: read-out mechanisms
CCD: read-out mechanisms
Scarica

Photodetectors