From accretion/inflows to ejection/outflows From IN to OUTflows v/c=0 0.1 0.2 0.3 0.4 OUT OUT IN Magnetic Tower by Kato et al. 2003 (see also Lynden-Bell 2003) IN In summary, X-ray diagnostics allow to probe: Overall wind structure… Winds/outflows through blueshifted absorption lines Quasar wind model by Elvis 2000 but also inner structure Accretion/inflows through redshifted Fe emission/abs. lines v/c= 0 0.1 0.2 0.3 0.4 Magnetic Tower by Kato et al. 2003 (see also Lynden-Bell 2003) X = termico Radio e Gamma lontani X non termico da Jet Pseudocore & Standing Shocks "Pseudocore" on VLBI images is either: 1. ~ 1 surface 2. First standing (oblique or conical) shock outside ~ 1 surface Proposed by Daly & Marscher 1988 ApJ Pseudocore at ~3 mm >1 at ~3 mm At ~1 cm >1 at ~1 cm At ~4 cm >1 at ~4 cm Prediction: Moving knots can appear a bit upstream of pseudocore if already loaded with high-E electrons Stationary feature w/ variable pol. Pseudocore & "True" Core at mm Wavelengths "True" core (seen at < ~1 mm): end of flow acceleration zone Perhaps can probe acc. zone at ~ 1 mm & FIR (see Jorstad et al. 2007, AJ, in press) CORE LOCATION: approaching the SMBH Hada et al. 2012, observed M87 at different frequencies with VLBA. They estimated the core shift because of different optical depths. The SMBH is at 14-23 Rs from the 43GHz core New observations with VLBA and the GBT have been obtained but not yet scheduled to observe at 86 GHz and to obtain images in the accretion region Large scale jet direction INNER JET PROPERTIES: jet launching region R 0.56±0.03 parabolic Conical shape Non spinning Max spinning Energia prodotta nel nucleo viene portata ai lobi esterni attraverso un canale in cui energia viene trasportata ad altissima efficienza. Perdite per quanto piccole fanno si che il jet sia visibile. Simmetria: Si osserva asimmetria maggiore vicino al nucleo, cala con la distanza --FR I one-sided entro 1 kpc poi tendono a simmetria --FR II tipicamente one-sided anche su grande scala e jet verso hot spot piu’ brillante -- accordo scala pc e kpc Effetti relativistici anche su grande scala in accordo con effetto Garrington-Laing, in accordo con pc e tenuto conto della simmetria dei lobi STUDIES ON ALL SCALES: FROM KPC TO PC 510 kpc 17 kpc 17 kpc 28 pc z = 0.01 (Schwarzchild radius) M87 (Virgo A) FRI sources: jet deceleration There is good evidence that FRI jets are highly relativistic on pc scales (and direct measurement of motions at >5c in M 87 on kpc scales). They appear to decelerate to sub-relativistic speeds on scales ~1 - 30 kpc. Compare approaching and receding jets (assumed identical) to deduce velocity field => spine/shear layer picture. More ingredients (FRI) Tail Jets Tail 3C 31 (VLA 1.4GHz; 5.5 arcsec FWHM) JETS IN FR I : * LARGE OPENING ANGLE * TWO-SIDED * MAGN FIELD TO JET AXIS Evidences of a strong jet Deceleration within 5 kpc from the core LOW VELOCITY (Sonic-subsonic): M 2, v 0.1 c DECREASING FR I RADIO GALAXIES (LOW VELOCITY JETS) CAN SHOW DISTORTIONS - OSCILLATIONS - CURVATURES (INTERACTION WITH THE AMBIENT MEDIUM) Tailed radio galaxies NAT - WAT Total intensity fits Model Data 0.75 arcsec FWHM 0.25 arcsec FWHM Systematic properties of decelerating relativistic jets in low Luminosity radio galaxies Laing et al. arXiv:1311.1015 Model velocity field FRII jets Much less is known about detailed structure, because of poorer transverse resolution. Evidence for relativistic velocities (>0.6c) on all scales in the jets (Wardle & Aaron), and even beyond the hot-spots in powerful quasars (Dennett-Thorpe et al. 1997). As in FRI's, velocity stratification is very likely, so the jet spines may have even higher speeds. Ingredients (FRII) AGN Jet density: FRII Morphologies undisturbed intergalactic gas “cocoon” (shocked jet gas) splash point backflow bow shock Cygnus A (FR II) - VLA, 6cm JETS IN FR II RADIO GALAXIES : * VERY COLLIMATED * ONE-SIDED * MAGNETIC FIELD PARALLEL TO THE JET AXIS HIGH VELOCITY (supersonic - relativistic) : relativistic beaming affects the prominence of the kpc scale Jets, but less than in the central regions (i.e. Г decreases) Data are consistent with Г = 2 on the kpc scale. One-sided kpc scale jet Da evidenza getti radio su grande scala: 1) Jets in FR I non relativistici dopo alcuni kpc (simmetria, brillanza, angolo apertura 2) Jets in FR II relativistici su kpc scale: one-sided, brillanza angolo apertura Evidenza ulteriore, importante da scoperta emissione X jets su kpc scale: 2 tipi di getti con emissione X a) X da sincrotrone – unica power law (richiede riaccelerazione in loco) b) X da SSC – elettroni relativistici con radiazione di fondo – richiede getti relativistici (per vedere fotoni boosted) Lessons from large scales: complex relation between emission at different frequencies 3C273: synchrotron and inverse Compton mechanisms may both be important at X-ray wavelengths Optical HST X-ray Chandra Radio MERLIN FR I: Jet dominated emission, two-sided jets, typically in clusters, weak-lined galaxies FR II: Lobe dominated emission, one-sided jets, isolated or in poor groups, strong emission lines galaxies Radio vs optical luminosities: LR Lopt 1.7 (Owen & Ledlow 1994) INNER JET PROPERTIES: jet launching region R 0.56±0.03 parabolic Conical shape Non spinning Max spinning What Powers Active Galactic Nuclei?? (1) A compact central source provides a very intense gravitational field. For active galaxies, the black hole has MBH = 106 - 109 Msun (2) Infalling gas forms an accretion disk around the black hole. (3) As the gas spirals inward, friction heats it to extremely high temperatures; emission from the accretion disk at different radii (T>104 K) accounts for optical thru soft X-ray continuum. (4) Some of the gas is driven out into “jets,” focused by magnetic fields. How efficient is the energy production? Before disappearing into the event horizon of a black hole, some fraction of the infalling mass is converted into energy. Matter is heated to high temps by dissipation in accretion disk and radiates away its gravitational potential energy. BH radius is Rs=2GM/c2 = 0.25 M8 light hours (which sets minimum variability timescale). Smallest stable orbit is at 3Rs. Max efficiency occurs when all potential energy released during fall from infinity to 3Rs is extracted. GR gives efficiency = 6% to 40% depending on BH rotation. Example: By consuming 1 – 10 solar masses per year, black hole accretion disk can radiate ~100 – 1000 LMilkyWay. Fueling Quasars Energia da conversione di massa in energia Energia disponibile e’ E = ηMc2 Il rate di energia emessa e’ L = dE/dt = ηc2 dM/dt dove dM/dt e’ accretion rate Quindi per una tipica QSS occorre dM/dt = L/ηc2 ≈ 1.8 x 10-3 (L44/η) in M●yr-1 accretion rate In caso di energia gravitazionale cioe’ energia da collasso U = GMm/r ed L = dU/dt = gM/r dm/dt = GM/r dM/dt (energia tipo supernovae) η e’ proporzionale a M/r = compattezza del sistema L’efficienza e’ quindi massima nel caso di un BH con Rs = 2GM/c2 importante e’ il raggio finale nel collasso! = 3 x 1013 M8 cm = 10-2M8 light days Poiche’ maggior parte della radiazione ottica e UV avviene a 5 Rs, U = GMm/5Rs = GMm/(10GM/c2) = 0.1 mc2 Da cui a 5 Rs η = 0.1 H He e’ 0.007 molto efficiente (ordine di grandezza!) Se Lqss = 1046 erg s-1 dM/dt ≈ 2M●yr -1 Eddington accretion rate dMe/dt = Le/ηc2 = 2.2 M8M●yr-1 dMe/dt e’ il massimo accretion rate possibile in caso di semplice simmetria sferica (si supera se non simmetria) 1) Venti stellari – gas da supernovae Si stima che ritmo produzione gas possa essere M• ≈ 10-11 – 10-12 (Mgal/M•) in M•/anno che per Mgal ≈ 1011 M• potrebbe essere in accordo con M•E se MBH8 = 1 2) Stelle canibalizzate da BH (potrebbero dare origine a variabilita’ + knots in moto proprio) 3) Gas di origine extragalattica, piccole galassie inglobate con merger (piccole di solito sono ricche di gas) CSO mostrano merger recente Problema: dopo merger tempi per avere equilibrio e gas al centro possono essere lunghi (oltre 105 anni) Il problema maggiore nel fueling di un AGN tramite accretion diventa quindi non un problema di energia ma di momento angolare difficile/impossibile da misurare. Forma assiale delle radiosorgenti (e non sferica) suggerisce che rotazione e’ importante Particella in orbita circolare Momento angolare per unita’ di massa: |L|/m=(GMr)1/2 Con M = massa interna a r (M=1011 r =10kpc) Se vogliamo accretion quindi dobbiamo perdere momento angolare (merger tra galassie) importanza dei getti? Che avviene attorno a BH? Una particella in orbita attorno a BH non puo’ avere orbite stabili entro una certa distanza; superata questa distanza minima comunque la particella cade su BH (entro l’orizzonte) Se BH non rotante rmin = 3Rs Se BH rotante abbiamo rmin1 (particella ruota come BH) o rmin2 (particella ha spin contrario) rmin1 = Rs/2 rmin2 = 9/2Rs BH ruotante ha alcune caratteristiche: esiste un limite statico entro cui ogni cosa viene risucchiato e non puo’ stare in quiete anche se esercita forze contrarie. Il limite statico e’ raggio orizzonte in direzioni polari e maggiore in regioni equatoriale – superficie statica ha simmetria assiale Parametri Fisici Campo Magnetico Da frequenza massima di autoassorbimento: H 2.5 10-5νmax(GHz)5Smax(Jy)-2θ(mas)4 Ma solo per compatte – di solito H da equipartizione: Heq propto (L/V)2/7 K2/7Φ-2/7 Dove L e V sono Luminosita’ e Volume della radios. K e’ il rapporto tra energia protoni ed elettroni (assunto spesso = 1) Φ e’ il filling factor (1 in mancanza di meglio) Valori tipici di Heq sono compresi tra 10-6 e 10-4 gauss nelle regioni estese Nelle pc scale regions possiamo avere anche qualche decimo di gauss La verifica della equipartizione si puo’ avere in ammassi di galassie confrontando la pressione (energia) non termica con quella termica ricavata dalla emissione in banda X (BT) Energia Totale Minima (a equipartizione): Utot propto L4/7 V3/7Φ4/7 con valori tipici 1057 – 1061 erg Da cui posso ricavare la pressione interna Se umin = Utot/V Peq = (Γ – 1) umin = 1/3 umin propto (L/V)4/7 Φ 4/7 Γ = 4/3 per particelle relativistiche Ordini di grandezze energie: Tipo Utot(erg) Heq(gauss) 10-4--10-5 Tel(anni) a 5GHz FR II hot spot 1057 104—106 FR II lobi 1058-60 10-6 107—108 FR I 1055-60 10-6 107—108 Stime vite medie Se la separazione dei due lobi radio e’ D e si ammette che origine e’ dal nucleo centrale, sicuramente sara’: Trs > D/c che con D tra 1 e 500 kpc diventa una Trs dell’ordine di 103 – 106 anni rispettivamente Abbiamo viso pero’ che CSO hanno velocita’ dell’ordine di 0.2c e stessa velocita’ la trovo da studio statistico separazione lobi Da/Dr = (1 + βsep cos θ)/(1 – βsep cosθ) Se angolo e’ casuale ricavo delle velocita’ <= 0.2c con vite medie Cinematiche dell’ordine di 105 – 107 anni ENSEMBLE OF ELECTRONS N ( E) N 0 E Synchrotron emissivity: N0 H(1 ) / 2 1 2 Spectral index AGEING: only e- with E < E* survive spectral break proportional to the source age Original spectrum Aged spectrum * H-3 t -2 Vite medie radiative Perdite di energie radiative per effetto di emissione di sincrotrone e IC con radiazione 3 oK provocano brusco irripidimento spettro dell’ordine di Δα = 0.5 L’eta’ diventa: tr = 1.59 x 109 x (B1/2eq)/(Beq2 + Bci2)((1+z)γ*)1/2 yr Bci = 3.25(1+z)2 B in microgauss e γ in GHz Velocita’ separazione lobi da eta’ radiative vanno di solito tra 0.05 e 0.2c Esercizio didattico su Cigno A – lavagna e quaderno Per dettagli ad esempio Tucker: ‘radiation processes’ FR I: Jet dominated emission, two-sided jets, typically in clusters, weak-lined galaxies FR II: Lobe dominated emission, one-sided jets, isolated or in poor groups, strong emission lines galaxies Radio vs optical luminosities: LR Lopt 1.7 (Owen & Ledlow 1994) Ljet = 0.015 Ledd Ledd=1.3x1038 MBH/M● Ghisellini e Celotti AA 379 L1, 2001 Possiamo mettere in relazione la potenza radio e l’output di energia del Jet. La potenza radio dei lobi e’ energia accumulata da jet in vita rs Willot et al. 1999 1) Ljet = 3 x 1021 L6/7151 erg s-1 Piu’ recentemente da cavita’ clusters: Pjet propto Pradio 0.5-0.7 vedi Cavagnolo et al. ApJ 720, 1066; 2010. Usando la relazione di McLure e Dunlop, 2001 2) Log(MBH/M●) = -0.62 (±0.08) MR -5.41(±1.75) Abbiamo quindi una relazione tra Ljet e MBH la separazione tra FRI ed FRII corrisponde a un rapporto costante Ljet/MB E se traccio le linee Ljet = LEdd trovo che: 3) Ljet ~ 0.015 LEdd dove LEdd = 1.3 x 1038 MBH/Mo erg/s e’ la linea che mi separa FRI da FRII Introduciamo energia dell’ AGN usando come indicatore la NLR nelle regioni piu’ compatte (BLR non in tutte!) Usiamo la quantita’ di radiazione che ionizza emission line: Fotoionizzazione da nuclear accreting radiation: Lion Viene usato intensita’ [OII] emissione [OIII] e’ spesso in parte oscurata 4) Lion 5 x 103 L151 (Willot et al. 1999) 6 x 10-3 LEdd La divisione tra FRI ed FRII corrisponde ad una separazione tra Lion e MBH Lion 6 x 10-3 LEDD Quindi separazione tra FRI ed FRII e’ relazione tra Massa e Radiazione emessa da BH Lion/LEdd 10-3 suggerisce un valore critico di dm/dt (accretion rate in Eddington units) in cui il modo (efficienza ?) di accretion cambia. Possiamo assumere che Lion Ldisk = η dMacc/dt c2 η e’ efficienza = 0.1 e quindi dm/dt (in Eddington units) 6x10-2 η-1 (vedi prima) Speculazione: basso accretion vento da disco che influenza ISM pc-kpc region e provoca rallentamento jet FR I Alto accretion no vento, no rallentamento FRII Collegamento con HEG – LEG: E’ importante notare che esiste una forte correlazione tra righe in emissione e l’emissione ottica nel continuo: Optical cores (non thermal) can be directly associated to the source of ionizing photons jet-ionized narrow line region A compact emission line region is present in FR I correlated with optical non thermal high density high covering factor: diski structure La scarsezza di gas in low power e’ quindi importante per differenziare le proprieta tra AGN di bassa e alta potenza. Jet-Disk connection see arXiv:1109.6584 90% AGN little or no jet emission 10% powerful twin jets Vip connection between accretion (X+optical), BH (mass, spin) jets (radio) Dichotomy in AGN: HEG standard cool luminous accretion disks (from X-ray) strong Fe line + torus (cold gas). In gas-poor (no rich clusters center) medium LEG X-ray dominated by pc jets (non-thermal), no signature of cold disk, no torus at all – inefficient accretion (sub-Eddington) Accretion flows – Jet Very high High/soft Low/hard Corbel et al 2012 Accretion Power in Astrophysics Andrew King Theoretical Astrophysics Group, University of Leicester, UK accretion = release of gravitational energy from infalling matter accreting object matter falls in from distance energy released as electromagnetic (or other) radiation If accretor has mass M and radius R, gravitational energy release/mass is Eacc GM R this accretion yield increases with compactness M/R: for a given M the yield is greatest for the smallest accretor radius R e.g. for accretion on to a neutron star ( M M sun , R 10km) Eacc 10 erg / gm 20 compare with nuclear fusion yield (mainly H He) Enuc 0.007c 6 10 erg / gm 2 18 Accretion on to a black hole releases significant fraction of rest—mass energy: R 2GM / c Eacc c / 2 2 2 (in reality use GR to compute binding energy/mass: typical accretion yield is roughly 10% of rest mass) This is the most efficient known way of using mass to get energy: accretion on to a black hole must power the most luminous phenomena in the universe Lacc Quasars: GM 2 M c M R L 1046 erg / s X—ray binaries: requires L 10 erg / s Gamma—ray bursters: 39 L 1052 erg / s M 1M sun / yr 10 7 M sun / yr 0.1M sun / sec NB a gamma—ray burst is (briefly!) as bright as the rest of the universe Accretion produces radiation: radiation makes pressure – can this inhibit further accretion? Radiation pressure acts on electrons; but electrons and ions (protons) cannot separate because of Coulomb force. Radiation pressure force on an electron is Frad L T 2 4cr (in spherical symmetry). Gravitational force on electron—proton pair is Fgrav (m p me ) GM (m p me ) r 2 thus accretion is inhibited once L LEdd 4GMm p c T Frad Fgrav , i.e. once M 10 erg / s M sun 38 Eddington limit: similar if no spherical symmetry: luminosity requires minimum mass bright quasars must have M 10 M sun brightest X—ray binaries M 10M sun 8 In practice Eddington limit can be broken by factors ~ few, at most. Eddington implies limit on growth rate of mass: since Lacc 4GMm p M 2 c c T we must have M M 0e where t c T 7 5 10 yr 4Gmp is the Salpeter timescale The AGN paradigm We know (more or less) the ingredients: The AGN paradigm Kpc scale pc scale Credit: A. Muller Open issues Jet Characterise the particle content, geometry and velocity of the outflow/jet Study of accretion and ejection flows around supermassive black holes in AGNs Characterise the geometry and velocity of the outflow/wind, and its impact on the host galaxy and cluster Hot corona Credit: A. Mueller Characterise the geometry and mode of the accretion flow Accretion (inflows) Still, we don't know exactly the accretion mode/type (SAD, ADAF, RIAF, CDAF, etc.)… (Müller, ‘04) Main problem: disc viscous time can be too long As discussed before mergers and jets are important to solve this Point Interesting: King 2010 arXiv:1002.1808 Good review: Slexander & Hickox 2011 arXiv:1112.1949 Spectrum of a Luminous Quasar: Jet and Disk Contributions thermal (disk) synchrotron (jet) inverse Compton (jet) Lichti et al. (1994) Synchrotron and inverse Compton Highenergy emission in blazars The “blazar sequence” FSRQs BL Lacs Fossati et al. 1998; Donato et al. 2001 Properties of Blazars 3 months, 10 the SEDs of blazars are characterized by two broad humps, interpreted as the synchrotron and the inverse Compton emission. Quite often the high energy hump is dominant. Fossati et al. (1998). The obtained SED describe a sequence with the following properties: i) the radio luminosity is a good tracer of the bolometric one; ii) by increasing the radio (hence the total) luminosity, the frequencies of the two peaks shifted to smaller values, and, at the same time, iii) the high energy peak became more important. BL Lacs are dominated by the jet emission: double humped Synchrotron + SSC spectrum FSRQs show a clear signature of a disc + BLR This is not a relativistic effect (jets in FSRQs high velocity!) but an accretion effect dm/dt > 0.01 to have a disc emission. Disc and BLR additional source of seed photons for IC The blazar sequence was interpreted by as the result of the different amount of radiative cooling in different sources. It is confirmed by present data. Low power sources are BL Lac objects, with weak or absent broad emission lines. The main emission mechanisms are synchrotron and self Compton. Since the cooling is limited, electrons can attain high energies, and they preferentially produce high frequency radiation. As a result, the produced SED is “blue“ (namely, the synchrotron peak is at UV or soft X–ray frequencies, while the high energy peak can reach the TeV band. These blazars are also called High frequency BL Lacs, or HBL . By increasing the total luminosty, we have objects with strong broad emission lines, and presumably jets with stronger magnetic fields. Cooling is more severe, and the electron energies are smaller. The peak frequencies of the two humps shift to the “red" (sub–mm for the synchrotron, MeV for the Compton. These are called Low frequency BL Lacs, or LBL. At the same time, the electrons can scatter seed photons not only produced internally in the jet (i.e., their own synchrotron photons), but also the seeds coming externally (disk, broad line region, torus). The enhanced abundance of seed photons makes the scattering process more important, and the high energy bump is then dominant. Blazar sequence confirmed by Fermi Blazars can be divided into low power BL Lacs and high power FSRQ This parallels FRI and FRII. This division is the results of a change in the accretion + SMBH mass Emitting region of most jet luminosity: still a problem (see next) Jet power and disc luminosity correlate. Jet and accretion correlate but jet power is larger than accretion accretion cannot be the only driver: e.g. accretion amplify magnetic field and this field extract the rotational energy of the SMBH accretion & mass & spin BL-Lacs Low power BL Lacs High Power QSS FR I FR II Division a change in accretion regime FSRQs The luminosity of the BLR is a function of the γ–ray luminosity. The first is a proxy of the disk luminosity, while the latter is a proxy of the bolometric jet luminosity, in turn linked with the jet power. We found that the two luminosities correlate, even considering that the γ–ray luminosity can vary, in a single object, by more than two orders of magnitude. L>0.01LE dd Torus ~1-10 pc G BLR L<0.01LEdd SSC only weak cooling G BLR <<0.2 pc X TeV Core radiogalaxies Ghisellini et al. 2009 MNRAS 396, L105; FSRQs and BL Lacs sono nettamente separati nel piano indice spettrale gamma e luminosita’ gamma BL-Lac meno luminosi e + hard La divisione potrebbe essere dovuta a un diverso accretion. Usando Lgamma come proxy per Lbolometrica, la separazione avviene a un accretion rate dell’ordine di 0.1 accretion rate di Eddington Jets are carrying a large total power that correlates with the luminosity of the accretion disk The division of blazars in 2 classes of BLR emitting (FSRQ) and Line-less (BL-Lacs) is a consequence of a rather drastic change of the accretion mode:radiatively inefficient below a critical value of the accretion rate, corresponding to a disk luminosity of about 10% of Eddington value La Funzione di Luminosita’ (FdL) mi dice la % di galassie che emettono con potenza maggiore di P Numero di oggetti per unita’ di volume con una data luminosita’ o con luminosita’ superiore a un certo valore Differenziata: oggetti con luminosita’ tra P e P+dP Integrale: N (>P) Auriemma et al. 1977 RLF bivariata: la probabilita’ di una G di emettere in radio e’ una forte funzione della sua Luminosita’ (massa) Come calcolarla? Problema campioni limitati in flusso, quindi limiti e’ un problema per cui devo usare survival analysis….. Radio-loud AGN Mass variation of radio-loud fraction fradio-loud M*2.5 fradio-loud MBH1.6 Vedi Best et al.: 2005 MNRAS 362, 9; 362, 25 Optical AGN Radio-loud AGN Mass variation of radio-loud fraction fradio-loud M*2.5 fradio-loud MBH1.6 Mass-dependent radio luminosity function Large size of SDSS sample of radio-loud AGN allows the luminosity function to be derived as a function of mass. The luminosity func. has a similar shape (and characteristic break luminosity) at all masses. Figure: the fraction of galaxies that host radio-loud AGN as a function of both stellar mass and radio luminosity. Mass-dependent radio luminosity function Repeat for black hole masses, using galaxy velocity dispersions (and MBH-σ relation): again, shape of the luminosity function is independent of mass. Figure: the fraction of galaxies that host radio-loud AGN as a function of both black hole mass and radio luminosity. Mass-dependent radio luminosity function If we now take out the mass dependence by scaling these plots by MBH1.6 - they line up. Probability of a galaxy being radioloud depends on mass, but the ultimate radio luminosity of that radio source does not Figure: the (mass-scaled) fraction of galaxies that host radioloud AGN as a function of radio luminosity. Key points so far • The probability of a galaxy being radio-loud depends strongly on its black hole mass ( MBH1.6) • The radio luminosity of the source that results is independent of black hole mass • fradio-loud at highest masses is >25%. Even if all galaxies become AGN, they must be “turnedon” for 25% of the time! => accretion rate must be low Interpretation summary • Low luminosity radio sources are due to ‘dormant’ massive black holes being re-triggered by the cooling of hot gas. • The resulting AGN activity feeds energy to the environment, and could be a self-regulating process. La probabilita’ di radio loud dipende da ambiente? Sappiamo che FR II merger FR I hot corona, ma dipende Se ammasso o isolate (gruppo) ? Localmente no, ho > rg in ammassi perche’ ho piu’ galassie ma FdL Non cambia (attenzione cD) Ad alto z? formazione/evoluzione? Non so pareri discordi ma Attenzione a effetti di selezione Probabilita’ dipende da M (Massa) ma se FRI o FRII dipende Da Mbh + accretion! Evoluzione QSS (e AGN in generale) Fin da 1968 apparve chiaro che la densita’ QSS nel passato era molto maggiore p(z=1) = 150 р(z=0) Assumendo evoluzione di densita’ 1) Che tipo di evoluzione? Pura Luminosita’ – Pura Densita’ o altro? Per z<3 pure luminosity evolution provides a good fit to the QSS LF 2) Evoluzione QSS ha un picco a z = 2.5—3 e poi cala velocemente a z>3 il numero delle QSS troppo basso per distinguere tra diversi modelli evolutivi Local BH MF (Shankar et al.2009) Local stellar MF (Baldry et al.2008) z=6 stellar MF (Stark et al.2009) z=6 BH MF (Willott et al.2010b) • Black hole mass function has evolved by ~104 from z=6 to z=0 • Stellar mass function has 2 Evoluzione aspettata complessa, possibile differenza fisica ad alto e basso z QSS a z> 5.8 sono i sistemi piu’ massicci ad alto z Se luminosita’ = LE MBH > 109 Assumendo correlazione MBH con Mbulge arriviamo a Masse dell’ordine di 1011 Masse solari Con profonde implicazioni per cosmologia, ionizzazione della radiazione di fondo ed altro Vedi Artwick & Schade ARAA 1990 28, 437 Fan et al. 2001 AJ 122, 2833 e AJ 121, 54 Netzer et al. arXiv:1308.0012 studiano la star formation e la presenza di SMBH a z = 4.8 Selezionano sistemi con alta formazione stellare e giustificano la presenza di un eccesso di Massa e Luminosita’ con 2 possibilita’: 1) Oggetti in fase di merger con large supply di cold gas che produce larger BH mass and AGN Luminosity 2) Oggetti giovani dove AGN feed-back non rallenta SFR Quasars have been detected at very large distances, corresponding to a very young age of the Universe. As massive as the largest SMBHs today, but when the Universe was 0.75 Gyr old! Sesana arXiv:1110.6445 ottima bibliografia Bulk quasar population at z = 2-3 but quasars at z < 7 MBH in nearby quiescent galaxies MBHs ubiquitos MBHs correlate with bulge mass, luminosity and velocity dispersion and probably with dark matter halo mass Intimate connection linking SMBH mass and hosts Starburst galaxies often associated to quasar activity Dormant SMBHs are the relics of luminous quasars in the past Massive galaxies results of several merging/accretion events To-day SMBHs end product of evolutionary path BH seeded in proto-galaxies at high z MBH + MBH mergers and accretion = SMBHs Galaxy mergers cold gas in the center = star formation + accretion Energy outputs (jets – winds) feedback removing or heating gas Self-regulating accretion Hierarchical models ok with properties, lumin. Function ecc. But 1) When first seed BHs? 2) Which accretion gives >109 solar masses at z = 7? Where and when seeds of MBHs of z=7 quasars? Cold Dark Matter Universe: DM perturbations and DM halos Small halos collapse first and get bigger by merging with other halos (Press and Schechter) Baryons follow DM In some cases Mass exceeds Jeans limit collapse Mj ~ 104 Mo[(1+z)/10]3/2 Baryons start to virialize in a few DM halos of 105 Mo at z ~ 50 Efficient cooling rare but possible for 106 Mo at z ~ 30 for atomic H 108 Mo at z ~ 30 for molecular H Three main seeds of BH: Pop III star remnants: If m > 260Mo after ~ 2Myr star directly collapse into a BH of half initial mass = seed! Recent results: lower mass of PopIII stars, fragmentation and more challenging the viability of Pop III as seed BHs Direct collapse: Massive seeds of ~ 105 Mo Metal free halos and T > 104 K no H2 cooling and gas cloud collapses isothermally Problems with instability rotation wind driven mass ….. Possible but unlikely Runaway stellar dynamics BH of 102 – 104 Mo as end product of collisions in dense star environment Pop III stars form in clusters If stellar remnants merge together we can have a 105 Mo BH seed preferred ------------------------------------------ Volonteri 2012 (Science) Once we have a seed, what next? Seed BHs need to accrete an enormous amount of gas and need to do it fast! See Alexander & Hickox 2012 New Astronomy Reviews 3 principal growth mechanisms: free 1) Merger with other MBHs 2) Episodic accretion of compact objects, disrupted stars or gas clouds 3) Prolonged continuus accretion via accretion disks The MBH mass density in local universe is consistent with the accreted mass by integrating quasar LF at all redshifts The quasar mode = large amount of gas accreted in single coherent episodes via accretion disks A significant contribution is from obscured accretion in obscured objects General picture: galaxy mergers trigger inflow feeding quasar activity Grande Unificazione • MBH parametro n. 1 • M• parametro n. 2 • Spin BH BH = JBH/Jmax BH tra 0 e 1 n. 3 ricordo JBHmax = GM2BH/c • Orientazione (Doppler boosting e oscuramento) n. 4 Questi parametri dovrebbero descrivere ogni tipo di AGN: grande unificazione secondo scuola di Cambridge Altri parametri: morfologia galassia – ambiente esterno (ammasso o no) sembrano giocare ruolo secondario - I primi due parametri (Massa e Accrescimento) importanti per Luminosita’ (sono legati a LE) - Il terzo parametro (spin) diventa importante nella formazione o meno dei getti relativistici e quindi della attivita’ radio (aggiornato); legato a raggio minimo quindi ad energia ed efficienza Schema grande unificazione • AGN • • • • • • • • • • FSQSS SSQSS NLFRII BRLRG QSO S1 S2 FR I BL-Lac QSO2 MBH H H H H H L L H H H M• BH θ H H H H H H H L L H L (lungo linea di vista) I H I (SSQSS vicine) L (quasar radio quiete) L H H L H?? (aggiunto) H H H H L L L I I L SuperUnification ≡ AGN Character •SPIN: frame dragging associated with BH spin affects dynamics of the accretion flow –Magnetic fields anchored in the ergosphere can tap into the rotational energy of the hole, determining the power of the relativistic jet - Blandford & Znajek (1977); Meier (1999); de Villiers, Hawley, Krolik & Hirose (2005) –increased amount of angular momentum and energy carried outwards by the magnetic stresses compete with what is transported in by the accreting matter, and act to an anticorrelation between spin and accretion rate - de Villiers, Hawley & Krolik (2003); Krolik, Hawley & Hirose (2005) –decoupling of accretion rate between the inner and outer disk leads to spin-dependent build up of the inner torus, possibly affecting the character of the X-ray emission - Krolik, Hawley & Hirose (2005) SuperUnification ≡ AGN Character • Spin as a driver for the character of the radio emission (Meier 1999, see also Bicknell 1995, Ghisellini & Celotti 2001) ṁ=10-3, Meier 1999 Ghisellini & Celotti 2001 SuperUnification & AGN Evolution • • The rate of growth of SBHs by accretion is controlled by – the mean radiative efficiency of accretion ε= Lacc / Ṁc2 – the Eddington ratio η = Lacc/LEdd = ε Ṁc2 / LEdd – Tracing the evolution of SBHs entails following the evolution of both spin and mass accretion rate (Gammie et al. 2004, Shapiro et al. 2005, Volonteri et al. 2005) Obervational constraints: – Supermassive (109 M⨀) black holes must have been in place by a redshift z=6.43 (t=0.87 Gyr after the big bang) (Fan et al. 2003) – The observed QSO + AGN luminosity density must equal the local supermassive black hole mass density SuperUnification & AGN Evolution Seed SBH Spin-Down from Magnetic Dissipation of Rotational Energy Galaxy Mergers Gas Accretion Obervational constraints: Chang 9 M ) black holes must have been ineplace in Ṁ by a redshift Supermassive (10 ⨀ Chan Chan z=6.43 (t=0.87 Gyr after the big bang) (Fan et al. 2003) ge in j ge in Change The observed QSO + AGN luminosity density must equal the local ε in MBH supermassive black hole mass density ? Transition to a Different AGN Class Evolution of the Luminosity Function Eddington Ratios as driving the AGN Activity •McLure & Jarvis (2004) Marchesini et al. 2004 •Radio loud QSOs have larger SBH masses compared to Radio quiet QSOs, however: •The BH mass does not appear to correlate with Radio luminosity •There is significant overlap between RLQ and RQQ. RLQ FRI FRII •Marchesini, Celotti & Ferrarese (2004) •Within Radio Loud Objects; FRI, FRII and RLQ are indistinguishable based on the BH mass, but differ significantly in mass accretion rate (or Eddington ratio) Mass Accretion Rate for ε =1 Da simulazioni inserendo quello che sappiamo su merger Star formation accretion SMBH ecc ecc Risulta che dovremmo avere una presenza di AGN radio loud molto maggiore di quella reale Oltre SMBH ed accretion deve esistere un altro parametro che mi inibisce o no la radio loudness: SPIN! Do Black Holes Spin? • X-ray features produced by irradiation of relatively cold material in the vicinity of the SBH allow to probe directly the strong field regime and the location and kinematics of the cold material (Reynolds & Nowak Simulation of the profile shape of the Fe Kα line 2003 for a review). produced by an accretion disk surrounding a SBH with varying angular momentum, and seen at 40 degree inclination (Laor 1991; Fabian et al. 1989; Reynolds & Nowak 2003) Do Black Holes Spin? MCG-6-30-15 (Fabian et al. 2002) XMM, 325 ks Inner radius 2 rg Outer radius ~6.5 rg 4C 74.26 (Ballantyne & Fabian 2005) XMM, 28.8 ks Inner radius 1.2 rg Outer radius ~6 rg Although not airtight, these observations are taken as evidence of rapidly spinning black holes. • MCG-6-30-15 is radio quiet, while 4C74.26 is radio loud, suggesting that spin is not the fundamental parameter regulating radio power???. Do Black Holes Spin? • Timing observations could yield a signal corresponding to the period of the last marginally stable orbit, and therefore be used to measure the BH spin (Melia et al. 2001) • Near IR observations of SgA*, believed to be the site of the BH at the galactic center, detected flares with a quasi-period variations on a 17 minute timescale, pointing to a BH spin j = 0.52 (for a 3.6 106Msun BH). Doeleman et al. 2012 Science 338, 355 M87 con 4 antenne US+ Hawaii, Arizona e California a 229 GHz profilo di brillanza: curve: best fit gaussiana di 40 microarcsec (-) gaussiana + ring (..) Quindi possiamo dare un limite alla innermost stable circular Orbit (ISCO). Il diametro di ISCO cambia con lo spin: SPIN 0 escluso Diametro misurato Role of the Central Rotating Black Hole • Important physical properties depend strongly on whether the black hole is rotating in a retrograde or prograde fashion w.r.t. the accretion disk • Topology of the black hole magnetosphere • Power of the Blandford-Znajek jet that is produced • A modified version of the Wilson & Colbert (1995) “spin paradigm” may explain a lot of AGN spin and radio loud/quiet properties 34 Role of the Central Rotating Black Hole 1. Black holes cannot support currents or magnetic fields by themselves • The black hole magnetosphere is anchored in the accretion disk, supported by currents in the inflowing plasma (BZ 1977; Punsly & Coroniti 1990) • Two different kinds of black hole magnetospheres – Closed: NO open field lines on the black hole horizon Wilms et al. (2001) j = 0.7 Black hole-driven (Blandford-Znajek) jet Uzdensky (2005) – Open: significant magnetic flux is deposited on the horizon j = –0.9 Strong black hole-driven BZ Garofalo (2009) Role of the Central Rotating Black Hole (cont.) 2. Shear between rotating black hole and disk likely will determine if a BZ jet will be produced • • Strong differential shear will produce a magnetic tower, converting a closed magnetosphere into an open one and producing a jet Amount of shear between hole and disk is a strong function of black hole spin j Uzdensky (2005) Uzdensky & MacFadyen (2006) Garofalo (2005) Komissarov (2005) jets very likely (–1 < j < 0); jets possible 0.75 < j < 0.99) jets likely jets UNlikely jets very UNlikely (0 < j < 0.75; j > 0.99) BZ Jets are most likely to form for PROGRADE black hole spins (relative to accretion disk rotation) Closed magnetospheres / Jetless sources are most likely to form for RETROGRADE black hole spins Role of the Central Rotating Black Hole (cont.) 3. Black hole spin also determines the amount of magnetic flux deposited on the horizon, and therefore the POWER of the BZ jet • Garofalo (2009), the “gap paradigm”: – Magnetic flux between hole and last stable orbit rapidly accretes onto horizon – Retrograde accretion disks have much largergaps and more flux (9 GM/c2 vs. 1 GM/c2) – So, RETROGRADE BZ jets are more powerful by 1.5 – 2 orders of magnitude • Combined effect of shear and magnetic flux: gross spin asymmetry Garofalo (2009) Role of the Central Rotating Black Hole (cont.) 4. This suggests a modified ‘spin paradigm’ for the radio loud/quiet dichotomy: powerful FR II & FR I radio sources are produced by retrograde accretion and radio quiet sources produced by prograde accretion Black HoleProduced Jets Sikora, Stawarz, & Lasota (2007) FR Is BLRGs RLQs LINERs SEYFERTs PG QSRs Accretion DiskProduced Jets Role of the Central Rotating Black Hole (cont.) 5. Having powerful FR II and even weaker FR I radio sources produced by prograde accretion and radio quiet sources produced by retroograde accretion SOLVES a BIG problem for SUPERMASSIVE black holes: the 'spin paradox' • Radio galaxy observations had implied that SMBHs now spin slowly • – Powerful FR II radio galaxies (rapid spin) were much more common at z > 1 – SMBHs must now be spinning slowly (Wilson & Colbert 1995; DLM 1999) But optical observations of AGN imply black holes now spin rapidly – AGN appear to produce optical luminosity with efficiencies of 10 – 15 % – This implies that SMBHs are spinning rapidly: 0.7 < j < 0.9 (Elvis et al. 2002) • All is now consistent: SMBHs are now indeed spinning rapidly, but as prograde, radio weak systems (DLM & Garofalo 2010) Spin Future • Shadow cast by a SBH on the surrounding emitting region can probe BH spin SIMULATIONS j = 0.998 “VLBI” @ 0.6mm Spin retrogrado e possibile sua importanza j=0 Falke, Melia & Agol 2000 INNER JET PROPERTIES: jet launching region To understand the mechanisms of jet formation it is crucial to know the jet collimation structure. Asada et al (2011) found a parabolic collimation z(r) = Kr0.58±0.02 between a few 100s Rs and 105 Rs from the core Now we are reaching the stage to explore z(r) within ~ 100 Rs INNER JET PROPERTIES: jet launching region R 0.56±0.03 parabolic Conical shape Non spinning Max spinning arXiv e-print (arXiv:1411.5368) Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central black hole, as well as the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous used samples prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power as measured through the gamma-ray luminosity, and accretion luminosity as measured by the broad emission lines, with the jet power dominating over the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter. An inevitable consequence of Pjet∼10Prad is that the jet power is larger than the disk luminosity. Therefore the process that launches and accelerates jets must be extremely efficient, and might be the most efficient way of transporting energy from the vicinity of the black hole to infinity It will be interesting to explore less luminous jetted sources, to get hints on the possible dependencies of the jet power on the black hole spin and the possible existence of a minimum spin value for the very existence of the jet. In turn, this should shed light on the long standing problem of the radio–loud/radio–quiet quasar dichotomy