Why Galaxies care about Asymptotic Giant Branch stars S. Cristallo (INAF - Osservatorio Astronomico di Teramo) Collaborators: O. Straniero, R. Gallino, L. Piersanti, I. Dominguez, M.T. Lederer OUTLINE The importance of AGB stars Major improvements on the stellar code (FRANEC) AGB nucleosynthesis and evolution at different metallicities Very low metallicity AGBs : chemical features Why AGBs are so important… • Excellent tracings of halo structures; • IR emission (effects on integrated colors); • tracers of intermediate age populations (IZw18); • distance indicators (Mira); • production sites of LIGHT & HEAVY elements. AGB structure (1) CORE Earth-Sun (~200 RSUN) MAIN REFERENCES: Chieffi et al. (1998) Straniero et al. (2005) Cristallo (2006), PhD Thesis(*) Cristallo et al. (2007) (*) available at http://www.oa-teramo.inaf.it/osservatorio/personale/cristallo/pag_in_eng.html AGB structure (2) 13C(α,n)16O 22Ne(α,n)25Mg The resulting 13C pockets X(13Ceff)=X(13C)-X(14N)*13/14 1st ΔM~10-3 M 14N 11th strong neutron poison via 14N(n,p)14C reaction THE NETWORK About 500 isotopes linked by more than 700 reactions LEGENDA: (a,g) (a,n) (a,p) Kr83 Br83 Kr84 Br84 (p,g) (p,a) 3alfa Rb85 Kr85 Sr86 Rb86 Kr86 (n,g) (n,p) (n,a) Sr87 Rb87 Kr87 Sr88 Rb88 Kr88 Y89 Sr89 Light elements Beta Decay (n,g)+alfa decay Zr90 Y90 Sr90 Zr91 Y91 Sr91 Si28 Ne21 Na22 Ne22 Na23 Mg24 Na24 Heavy elements ALFA Decay Ba134 Ba135 Ba136 Ba137 Ba138 Cs133 Cs134 Cs135 Cs136 Cs137 Xe128 Xe129 Xe130 Xe131 Xe132 Xe133 Xe134 Xe135 Xe136 I127 I128 I129 I130 I131 I132 I133 Te127 Te128 Te130 Po210 Bi209 Bi210 Pb204 Pb205 Pb206 Pb207 Pb208 Pb209 Pb210 Tl203 Tl204 Tl205 Hg203 Hg204 Mg25 Al26 Mg26 Al27 Si29 Si30 P31 Si31 C/O~2 C/O>1 M=2M Z=Z (Z=1.4x10-2) Radiative burning of 13C(α,n)16O reaction FRANEC C/O~50 C/O~8 FRANEC M=2M Z=1.0x10-4 Molecular opacities Grains Molecular opacities 2000 K TiO1x10-4 (+) T 4000-5000 K Metallicity O-rich regime Solar ≡ 1.4x10-2 (*) CO 3x10-3 & 6x10-3 (*) H2O1x10-3 (*) Atomic opacities 12C 14N enh. factors & C-rich regime 1, 1.5, 1.8, 2.2, 4 CN 1, 2, 5, 10, 50 C1,25, 10, 50, 200 … 1,C10,3 100, 500, 2000… (*) Cristallo et al. in preparation (+) Cristallo et al. 2007 (ApJ 667, 489) The models The s-process: RESUME Z=1.4x10-2 Z= 3.0x10-3 Z=1.0x10-4 Final distributions YIELDS Isotope M2 Z1p4m2 M2 Z1m3 M2 Z1m4 H -4.06e-2 -1.16e-1 -9.92e-2 3He 3.77e-4 2.58e-4 1.83e-4 4He 3.23e-2 8.85e-2 7.99e-2 12C 5.84e-3 2.22e-2 1.71e-2 13C 5.16e-5 3.63e-6 6.97e-7 14N 1.31e-3 1.52e-4 3.40e-5 16O -1.04e-5 4.47e-4 4.03e-4 17O 3.32e-5 7.09e-6 9.33e-7 18O -5.65e-6 -5.07e-7 -3.20e-8 19F 8.17e-7 3.96e-6 2.44e-6 22Ne 7.06e-4 2.68e-3 1.41e-3 23Na 1.95e-5 3.24e-5 1.38e-5 24Mg 9.94e-6 7.33e-5 2.64e-5 25Mg 7.10e-7 4.36e-5 2.55e-5 26Mg 3.16e-6 3.16e-5 3.21e-5 26Al 3.06e-7 5.40e-8 3.18e-8 27Al 1.00e-6 1.88e-6 1.43e-6 Y 1.18e-7 1.55e-8 1.08e-9 Ba 1.91e-7 9.76e-8 4.42e-9 Pb 4.36e-8 9.85e-7 1.09e-7 AGB evolution at very low metallicities M=2MSUN Z=10-4 M=1.5MSUN Z=5x10-5 Cristallo et al. 2007 (ApJ 667, 489) The proton ingestion mechanism • Low time steps Time dependent mixing • Rapid structure reaction Coupling between phisical and chemical evolution • Large neutron densities (nn~1015 cm-3) 700 isotopes & 1000 reactions Work in progress!! Z= 5.0 x 10-5 M= 0.85 M M= 1.0 M M= 1.5 M M= 2.0 M M= 2.5 M Hollowell et al. (1990) Iwamoto et al. (2004) Suda et al. (2004) Straniero et al. (2005) Campbell et al. (2007) Effects of the Huge Pulse Nitrogen 12C/13C Litium Heavy elements The importance of using a FULL nuclear network FULL REDUCED THE STATE OF THE ART • First AGB models calculated with C-enhanced low temperature opacity coefficients, with the formation of a non-negligible 13C-pocket and calculated with a complete nuclear network; • AGB models at very low metallicity: an alternative scenario to the 13C-pocket spread requested by observations?