Workshop on Materials for Collimators and Beam Absorbers Experimental methods for material measurements at high strain-rate Lorenzo Peroni, Massimiliano Avalle Dipartimento di Meccanica, Politecnico di Torino Contents Introduction Material behaviors, characterization Experimental methods Mechanical testing equipment Conclusions L. Peroni, M. Avalle – Politecnico di Torino 2 Dynamic effects on material behavior Stress-strain characteristic and the effect of strain-rate on the mechanical behaviour of a material r d s d r s Variation in yield strength Variation in failure strength (ultimate tensile strength) Variation in elongation at failure Different workhardening behaviour E s s Quasi-static mechanical characteristic E Dynamic mechanical characteristic r s r d For many materials, strain-rate has negligible effect on the elastic modulus L. Peroni, M. Avalle – Politecnico di Torino 3 Strain-rate effect: some experimental results PP, mechanical characteristics 2.5 test 0.1 mm*s-1 forza (kN) a test 0.8 mm*s-1 2 b c test 8 mm*s-1 1.5 test 80 mm*s -1 test 6000 mm*s -1 1 test 8800 mm*s -1 d e 0.5 0 0 20 40 60 80 corsa (mm) 100 f 120 2 6000 PA66 PP PS PC TEEE ydynamic k static y Modulo Modulo di Young (MPA) Coefficiente dinamico k 2.5 1.5 1 -2 10 10 0 10 velocità (mm/s) 2 10 4 5000 Dati Datisperimentali sperimentaliPA66 PP Cowper-Symonds fit Cowper-Symonds fit 4000 3000 2000 1000 0 -2 -2 10 0 0 22 10 10 velocità (mm/s) 44 10 10 Different classes of polymers tested: PP, PA6, TEEE, PS, PC, EVA… L. Peroni, M. Avalle – Politecnico di Torino 4 Multiaxial behavior (plastics, foams…) As it is well known plastics and cellular materials yield is not independent on the hydrostatic component of stress hyd dev Pure shear fracture Uniaxial tension Von Mises hyd Tresca Uniaxial compression yield Hydro-compression Hydrostatic compression hyd Therefore, the plastic collapse condition cannot be characterized from the result of a single (uniaxial) test, having a given ratio of hydrostatic/deviatoric stress components, but it is necessary to perform several tests with different combinations of deviatoric and hydrostatic stress components L. Peroni, M. Avalle – Politecnico di Torino 5 Testing methods F F T Adhesive Adhesive F T F Uniaxial Compression Uniaxial Tension Torsion F p dev Pure shear fracture p Hydrostatic Compression p p p p F Hydro-Compression Uniaxial tension Uniaxial compression yield Hydro-compression Hydrostatic compression v hyd Split Hopkinson Pressure Bar v Dynamic compression Bending L. Peroni, M. Avalle – Politecnico di Torino 6 Uniaxial tension test Sample VCR VAQ L. Peroni, M. Avalle – Politecnico di Torino DAQ 7 Shear: torsion test Torsion loading test rig (shown with an aluminum foam sample mounted on it) L. Peroni, M. Avalle – Politecnico di Torino 8 Shear: 4-point asymmetrical tests z txz x • Used for the mechanical characterization of ceramics, and ceramics composites (CfC’s) according to ASTM C1469 standard Foamglas L. Peroni, M. Avalle – Politecnico di Torino 9 Shear strength of joinings Offset single-lap *CFC/Cu/CuCrZr and W/Cu/CuCrZr joints for ITER Shear/compression CuCrZr Torsion Cu/CfC joint shear test Pure Cu W, CFC Double-notch (ASTM C1292) SiC joined by: • Silicon • Glass L. Peroni, M. Avalle – Politecnico di Torino 10 Hydrostatic tests A = R = p dev Test chamber Fluid Uniaxial compression p Hydro -compression 3 Axial rod Hydrostatic compression hyd 1 A R (= p) dev Uniaxial compression c Hydro-compression b 1 Radial rod p Hydrostatic compression a 3 A Fluid hyd Axial rod L. Peroni, M. Avalle – Politecnico di Torino 11 Hydrostatic and hydro-compression test Hydro-compression Hydrostatic (compression) L. Peroni, M. Avalle – Politecnico di Torino 12 Fatigue loading • Stress-life and strain-life approach • Rotating bending (metals), plane bending (polymers, composites) high-cycle fatigue • Tension/compression low-cycle/high-cycle fatigue (evaluation of the hysteresis of the material) Strain-life curve AISI 1070 -1 10 Experimental hysteresis loop 600 -2 10 200 Strain Stress (MPa) 400 0 -200 -3 10 elastic strain plastic strain total strain fit elastic strain fit plastic strain fit total strain run out -4 10 -400 -600 -0.02 -0.015 -0.01 -0.005 0 Strain 0.005 0.01 0.015 0.02 2 10 3 10 4 10 5 10 6 10 7 10 Reversal to failure L. Peroni, M. Avalle – Politecnico di Torino 13 Composites 140 y = 0.047850x - 10.837615 120 y = -0.090067x - 12.971095 100 Stress (MPa) For orthotropic materials like most composites, tests at different loading angles are required to obtain the different moduli (in-plane E11, E22, G12) and Poisson’s coefficient (n12) For unbalanced layered composites, bending tests are also required Impact tests are also performed to measure dynamic properties energy absorption capability 80 y = 0.030996x - 17.644203 60 40 SG1 (µm/m) SG2 (µm/m) SG3 (µm/m) 20 0 -2000 -1000 0 1000 2000 3000 4000 5000 Strain (µm/m) GFRP sample with rosette to measure strain in different directions L. Peroni, M. Avalle – Politecnico di Torino 14 The Split Hopkinson Pressure Bar (SHPB) Operating principle The projectile hits the incident bar generating a compressive wave train The wave train propagates at the speed of sound in the bars material and reaches the specimen, then: ► ► It is partly reflected Partly crosses the specimen and goes through the transmission bar The reflected and transmitted waves are measured By reconstruction based on the two signal the dynamic mechanical characteristic is obtained Proiectile Incident bar Transmission bar Specimen L. Peroni, M. Avalle – Politecnico di Torino 15 The Split Hopkinson Pressure Bar (SHPB) Split Hopkinson Pressure Bar (SHPB, compression test) Split Hopkinson Tensile Bar (SHTB, tensile test) Tensile specimen Steel sheet Compression specimen Bulk adhesive Bulk adhesive Aluminum foam L. Peroni, M. Avalle – Politecnico di Torino 16 Determination of the stress-strain characteristic Time history measurement of: Deformazioni indotte alle provino-barre Tensione del interfacce provino Caratteristica meccanica "ingegneristica" Confronto tra caratteristica meccanica ingegneristica e vera x 10 -3 (( MPa tensione tensione MPa ) deformaz ione 1200 100 1.5 • Average stress (specimen) 1000 01 600 -2000 400 • Strain (specimen) Caratteristica meccanica vera Caratteristica meccanica ingegneristica -300 -0.5 200 -400 0 -1 • Strain-rate (specimen) Onda riflessa Onda trasmessa 800 -100 0.5 0 7 7 0.05 8 0.05 8 0.1 0.1 0.15 9 0.159 0.2 tempo deformazione tempo (( ss )) Signals synchronization 10 0.2 0.25 10 0.25 0.3 11 -4 -4 x x10 10 Evaluation of the stress-strain characteristic Velocità di deformaz ione del provino Deformazione del provino 500 deformaz ione 0 specimen t -0.05 -0.1 -0.15 2c0 Lprojectile reflected wave t dt -0.2 A average t Ebars bars transmitted wave t A (s) tempospecimen -0.25 7 8 9 10 -4 x 10 velocità deformazione ( s -1 ) 0.05 0 -500 -1000 -1500 -2000 -2500 7 8 9 tempo ( s ) 10 -4 x 10 L. Peroni, M. Avalle – Politecnico di Torino 17 Dynamic tensile equipment: FasTENS Sensore di spostamento laser Cella di carico dinamica To cover the speed range from 1 to 10 m/s, in tensile loading, in between the hydraulic systems and the SHPB, a special fast tensile equipment, pneumatically actuated, has been developed (FasTENS). Provino Sistema di rilascio rapido Aria Smorzatore L. Peroni, M. Avalle – Politecnico di Torino 18 Dynamic compression: ComPULSE Pneumatically actuated Maximum speed up to 15 m/s Maximum available energy 3 kJ Load measurement with piezoelectric load cells, maximum load 220 kN Stroke measurement with laser transducer (Keyence) Suitable also for tensile, bending, and other tests using special fixtures L. Peroni, M. Avalle – Politecnico di Torino 19 Low/high temperature testing A climatic chamber coupled with the ComPULSE equipment, was developed for dynamical tests down to –40°C (will be further improved to be pushed down to -80°C) and up to 100°C The sample (or component) can be conditioned but also tested at various controlled temperatures L. Peroni, M. Avalle – Politecnico di Torino 20 Concluding remarks The mechanical characterization of materials is one of the first steps in the design of high performance structures The spectrum of mechanical tests available is very large, to cover many possibility of loading, even far beyond established standard Custom testing solutions are routinely developed, and will be likely to be developed for innovative and advanced materials In most cases a single type of test is not sufficient to describe in details the properties and behaviour of an advanced material or composite L. Peroni, M. Avalle – Politecnico di Torino 21 Workshop on Materials for Collimators and Beam Absorbers Experimental methods for material measurements at high strain-rate Lorenzo Peroni, Massimiliano Avalle Dipartimento di Meccanica, Politecnico di Torino Thank you for your attention!