Physical activity and cardiovascular disease: evidence for a dose response
HAROLD W. KOHL III
Med. Sci. Sports Exerc., Vol. 33, No. 6, Suppl., 2001, pp. S472–S483
Scopo: riassumere sinteticamente la letteratura redente che dimostra una relazione
dose-risposta fra l’attività fisica e gli obiettivi cardiovascolari da raggiungere.
Studio basato su MEDLINE di articoli in inglese fino all’agosto 2000. Risultati accettati
nelle pubblicazioni, con almeno due tipi di esercizio, on esclusione di quelli che non si
riferiscono ai risultati clinici (incidenza della mortalità).
I lavori selezionati sono stati classificati sulla base delle malattie considerate: tutte le
malattie cardiovascolari (CVD), malattia coronarica (CHD) e ictus. Nell’insieme i
risultati dimostrano che l’incidenza delle malattie cardiovascolari, soprattutto
l’ischemia, e della mortalità, sono in relazione causale inversa con l’attività fisica in
maniera correlata alla dose. Al contrario, risultati equivoci sull’incidenza dell’ictus e
relativa mortalità non consentono una simile conclusione. Non vi è una forte evidenza
per una relazione dose-risposta fra l’attività fisica e l’ictus come conseguenza di CVD.
(The FASEB Journal. 2000;14:1685-1696.)
Nitric oxide-mediated metabolic regulation during exercise: effects of
training in health and cardiovascular disease
BRONWYN A. KINGWELL
È sempre più evidente che l’ossido nitrico (NO) è un importante regolatore
emodinamico e metabolico nell’esecuzione dell’esercizio fisico. Vi sono inoltre
adattamenti di questo sistema che probabilmente contribuiscono al miglioramento
della capacità funzionale ed agli effetti cardioprotettivi che si associano ad un migliore
livello di fitness.
La produzione di NO dall’arginina è catalizzata dal una diossigenasi, la sintetasi
dell’ossido nitrico (NOS), che è molto simile al citocromo P450. Si conoscono tre forme
di NOS, rispettivamente neuronale (nNOS), inducibile (iNOS) ed endoteliale (eNOS). Il
ruolo dell’NO riguarda diversi tipi di vasodilatazione, l’inibizione dell’aggregazione
piastrinica, funzioni immunitarie, la crescita cellulare, la trasmissione nervosa, la
regolazione metabolica e l’accoppiamento eccitazione contrazione.
NO come regolatore metabolico nell’esercizio
L’adeguamento della distribuzione di ossigeno e substrati metabolici alle richieste
metaboliche durante l’attività fisica è controllato dal flusso sanguigno e dalla capacità
delle cellule di estrarre i substrati: l’NO gioca un ruolo in entrambi questi processi. Fatti
che fanno supporre un ruolo dell’NO nell’esercizio sono un aumento dell’eliminazione
di NO con il respiro e un aumento dell’escrezione urinaria del secondo messaggero
dell’NO, il GMP ciclico e del nitrato derivante dal metabolismo dell’NO durante
l’esercizio negli atleti.
I meccanismi che controllano il flusso di sangue ai muscoli nell’esercizio sono
complessi e comprendono il controllo nervoso, metabolico, endoteliale, miogenico e la
pompa muscolare. Nell’insieme, questi meccanismi modulano il flusso con effetti sulla
pressione di perfusione e sul calibro delle arteriole di resistenza. Nella visione classica,
si è sempre ritenuto che il calibro dei vasi rappresentasse l’effetto combinato della
vasodilatazione dovuta alla produzione di metaboliti da parte del muscolo in esercizio
e della vasocostrizione da attivazione simpatica dovuta alla stimolazione di recettori
metabolici e meccanici nei muscoli. È tuttavia probabile che nell’adeguamento del
flusso alle richieste metaboliche giochi un ruolo fondamentale l’NO prodotto sia
dall’endotelio (eNOS), sia dal muscolo (nNOS).
Stimoli che controllano la dilatazione microvascolare sono: l’adenosina, l’acidità, l’aumento della
temperatura, la pO2, la pCO2, gli ioni magnesio e potassio. Altri meccanismi regolano la
dilatazione a monte delle grandi arterie di conduzione. La forza di taglio (shear stress) sulle
pareti vascolari, determinata dalla velocità e dalla viscosità del sangue, è oggi riconosciuta come
un importante stimolo che aumenta la concentrazione intracellulare di Ca2+ e la liberazione di
NO dalle cellule endoteliali. L’NO che si forma diffonde direttamente alle cellule muscolari lisce
sovrastanti, dove attiva la guanilato ciclasi che produce GMPc dal GTP e infine provoca
rilasciamento della parete vascolare. Dunque, la vasodilatazione del microcircolo in risposta
all’accumulo di metaboliti vasodilatatori genera un gradiente di pressione che stimola la
dilatazione mediata dal flusso delle arterie più prossimali da parte dell’NO rilasciato dalle cellule
endoteliali a causa dello shear stress. Questo rende possibile un aumento del flusso
microvascolare senza far cadere la pressione di perfusione.
Metabolismo del muscolo scheletrico
eNOS e nNOS sono espresse nelle fibre muscolari del ratto, mentre nell’uomo l’nNOS si trova nei
muscoli e l’eNOS nei vasi che li perfondono
La produzione di NO nel muscolo scheletrico contribuisce al controllo metabolico, modificando il
flusso di sangue, l’assunzione di glucosio, la fosforilazione ossidativa, la contrattilità e
l’accoppiamento eccitazione contrazione. L’NO risparmia riserve metaboliche promuovendo
l’assunzione di glucosio e inibendo la glicolisi, la respirazione mitocondriale e il consumo di
fosfocreatina. L’infusione di L-NMMA, inibitore della NOS, nell’arteria femorale di ciclisti durante
la pedalata riduceva l’assunzione di glucosio del 48% rispetto alla somministrazione di soluzione
salina.
Consumo d’ossigeno: è ben noto che l’NO ad alte concentrazioni, prodotto dalla stimolazione di
iNOS in condizioni patologiche inibisce la respirazione cellulare; ma studi su cani svegli hanno
dimostrato che il consumo d’ossigeno dei tessuti è modulato anche in condizioni fisiologiche
dalla normale produzione di NO. Nel cuore e nel muscolo scheletrico si registrano conseguenti
riduzioni di contrattilità. Questi effetti contrastanti dell’NO vanno interpretati alla luce di studi
che mostrano una riduzione dell’attività NOS nel muscolo durante la contrazione: se questo
riguarda i mitocondri, rappresenta un meccanismo di compensazione che protegge la funzione
muscolare e mitocondriale dall’influenza inibitoria dell’NO.
Funzione del cuore: oltre al ruolo dell’NO di origine endoteliale sul circolo coronarico, il
miocardio umano esprime sia nNOS sia eNOS, mentre l’iNOS si induce in condizioni patologiche,
anche nella miocardiopatia dilatativa. L’NO inibisce la funzione contrattile e il consumo
d’ossigeno a riposo.
L’NO inibisce l’assunzione di glucosio nel miocardio a riposo. Gli effetti contrattili riguardano la
fase di rilasciamento e riducono il tono in diastole; sono in parte dovuti all’inibizione degli
enzimi della catena respiratoria e della creatin chinasi.
In sintesi: l’NO può interferire con il controllo metabolico nell’esercizio con diversi meccanismi:
aumento del flusso ai muscoli e al cuore con aumento del trasporto di ossigeno, substrati e
ormoni (per es. insulina); conservazione delle riserve energetiche intramuscolari promuovendo
l’assunzione di glucosio, inibendo la glicolisi e il consumo di fosfocreatina; depressione della
funzione contrattile. Nell’insieme tutti questi effetti sono indirizzati alla protezione
dall’ischemia.
Effetti dell’allenamento sulle funzioni dell’NO in soggetti sani
Da quanto visto sopra si comprende che l’NO ha molteplici funzioni nella risposta circolatoria e
metabolica ad un episodio acuto di esercizio. È quindi logico attendersi che questo sistema si
adatti in risposta all’allenamento e che tale adattamento contribuisca al miglioramento delle
capacità e alla riduzione del rischio cardiovascolare. Finora la maggior parte degli studi è stata
dedicata alla regolazione del tono vascolare piuttosto che agli effetti metabolici.
In esperimenti sul cane l’allenamento aumentava la reattività agli agonisti dell’NO sia nelle
coronarie prossimali sia nel microcircolo coronarico, ma nel ratto e nel maiale si sono ottenuti
effetti opposti. Evidentemente ci sono differenze regionali e di specie nella risposta dell’NO
all’allenamento. Da questo deriva l’importanza di studi effettuati direttamente sull’uomo.
Nell’uomo stanno crescendo i risultati sulle variazioni croniche del sistema dell’NO in risposta
all’esercizio. Recenti dati dimostrano che la vasodilatazione endotelio dipendente è modificata
dall’esercizio nei periodi di riposo fra un episodio e un altro e che l’effetto non è circoscritto ai
vasi dei muscoli che hanno fatto esercizio.
L’esercizio dinamico con tutto il corpo può rappresentare un potente stimolo per gli adattamenti
del sistema dell’NO; inoltre, l’aumento dello shear stress vascolare che dipende dall’aumento
della frequenza cardiaca, della pressione pulsatoria, della viscosità del sangue e del flusso
possono alterare le risposte all’NO nei vasi dei muscoli che non lavorano. La produzione basale
di NO non cambia a riposo in seguito ad allenamento di lunga durata, ma la liberazione di NO
stimolata dall’acetilcolina aumenta, forse perché negli atleti si abbassa il colesterolo totale.
Questo significa che negli atleti la riserva vasodilatatoria endotelio dipendente è aumentata , il
che migliora la capacità di eseguire esercizi localizzati, indipendentemente dalla performance
cardiaca.
In sintesi: l’ampia letteratura sugli animali e i recenti risultati sull’uomo indicano che
l’allenamento aerobico per periodi che vanno da pochi giorni a diverse settimane, aumenta la
liberazione basale di NO dall’aorta, dai muscoli attivi e inattivi e dalle coronarie. Questo
contribuisce alla riduzione della pressione arteriosa a riposo che si ottiene dopo solo 4
settimane di allenamento. L’aumento della liberazione di NO è una risposta transitoria
all’allenamento, che porta progressivamente ad alterazioni strutturali.
L’allenamento aumenta anche la dilatazione endotelio dipendente da farmaci nei medesimi vasi,
ma questo richiede periodi di allenamento più lunghi. Questi adattamenti dovrebbero
aumentare il trasporto di sangue e substrati alle cellule del cuore e dei muscoli attivi,
migliorandone le capacità funzionali.
CONSEGUENZE DI UNA FUNZIONE ENDOTELIALE ALTERATA SULLE
CAPACITA’ DI ESERCIZIO
Endotelio
Ridotta liberazione e/o biodisponibilità di NO endoteliale si associano con una serie crescente di
malattie o rischi cardiovascolari, che vanno dall’ipercoesterolemia all’ipertensione, il fumo e il
diabete, e con malattia coronarica conclamata e insufficienza cardiaca. La ridota liberazione può
essere dovuta ad una riduzione dell’espressione di NOS o ad un difetto del meccanismo legato
allo shear stress o dei recettori che attivano la NOS. Nei pazienti ipercolesterolemici o con
aterosclerosi coronarica, le arterie sistemiche e le coronarie si costringono durante l’esercizio,
probabilmente in seguito ad una perdita della capacità vasodilatatrice da parte dell’endotelio
dovuta all’insufficiente liberazione o ad una maggior degradazione dell’NO.
In sintesi
Non ci sono prove definitive di un ruolo importante dell’NO nell’alterata risposta
all’esercizio. È inoltre difficile distinguere gli effetti sulla capacità di esercizio delle
limitazioni specifiche alla funzione dell’NO da altri fattori legati alla malattia; tuttavia, i
dati riportati e la plausibilità meccanicistica sostengono l’ipotesi che le disfunzioni
dell’NO limitino l’esercizio. Il meccanismo più importante è la riduzione del flusso di
sangue ai muscoli attivi, ma sono comprese anche la circolazione polmonare e
coronarica. Queste limitazioni possono diventare particolarmente importanti
nell’insufficienza cardiaca
EFFETTI DELL’ALLENAMENTO SULLA FUNZIONE DELL’NO NELLA
MALATTIE CARDIOVASCOLARI
Molteplici ricerche hanno studiato i possibili effetti dell’allenamento nel normalizzare la
vasoilatazione NO dipendente in diverse malattie, ma ci sono pochi studi sugli effetti
dell’NO sul metabolismo, compresa l’assunzione di glucosio. Per quanto riguarda la
funzione endoteliale, l’allenamento può produrre benefici con diversi meccanismi:
aumento della liberazione di No e prostaglandine da shear stress, aumento
dell’espressione di eNOS, ridotta disattivazione dell’NO da parte dei superossidi o altri
radicali liberi derivati dall’ossigeno. Il ruolo dell’NO nel modificare il tono vascolare in
seguito all’allenamento dev’essere definito come tipo di allenamento, regione vascolare e
andamento temporale della risposta. Il sistema dell’NO è modificato dall’allenamento in
presenza di insufficienza cardiaca, e questo può contribuire all’aumento delle capacità
funzionali, anche se il ruolo dell’NO nella circolazione coronarica e nel muscolo, con
particolare riguardo all’assunzione di glucosio, non è ancora stato definitivamente
dimostrato
Vagal modulation of heart rate during exercise:
effects of age and physical fitness
MIKKO P. TULPPO,1,2 TIMO H. MA¨ KIKALLIO,1,2 TAPIO SEPPA¨ NEN,1
RAIJA T. LAUKKANEN,2 AND HEIKKI V. HUIKURI1
1Department of Medicine, Division of Cardiology, University of Oulu, 90220 Oulu;
and 2Merikoski Rehabilitation and Research Center, 90100 Oulu, Finland
Am J Physiol Heart Circ Physiol 274:H424-H429, 1998.
Fig. 2. HR (A), 2-D vector analysis of
Poincare´ plots as indicated by
SD1 normalized for average R-R interval
(SD1n; B), and high frequency
(HF) power of spectral analysis (HF
power) normalized for average R-R
interval (CCV%; C) in 3 age groups
(fitness-matched) during exercise.
Values are means 6 SD. Kruskal-Wallis
H-tests were used at each exercise
intensity level (among all 3 groups)
followed by post hoc analysis (MannWhitney U-test) between young group
and old group. Xx P < 0.01 and xxx P <
0.001 for young group compared with
old group. ns, Not significant.
Fig. 4. HR (A), 2-D vector analysis of
Poincare´ plots (SD1n; B), and HF power
(C) in 3 fitness groups (age-matched)
during exercise.
Values are means 6 SD. Kruskal-Wallis Htests were used at each exercise intensity
level (among all 3 groups) followed by post
hoc analysis (Mann-Whitney U-test)
between good fitness group and poor
fitness group. X P < 0.05, xx P < 0.01, and
xxx P < 0.001 for good fitness group
compared with poor fitness group. ns, Not
significant.
La fitness fisica è correlata con la modulazione vagale della frequenza cardiaca durante
l’esercizio indipendentemente dall’età. Questo dimostra che una buona fitness aerobica
ha benefici effetti sulla regolazione autonoma del sistema cardiovascolare. Dati
sperimentali dimostrano che l’attività vagale evita la fibrillazione ventricolare durante
l’esercizio e che l’allenamento conferisce una protezione preventiva dalla morte
improvvisa aumentando la funzione autonoma cardiovascolare.
Scarica

seconda presentazione (vnd.ms-powerpoint, it, 967 KB, 3/16/12)