CSN1 Settembre 2005 ATLAS HLT/DAQ Stato e prospettive Valerio Vercesi Outline Pre-series Status in USA15/SDX1 Commissioning and exploitation Large Scale Test Activities, experiences Lessons learnt Activities Monitoring, ROD Crate DAQ Algorithms development and deployment Finance Accounting 2006 requests CSN1 Settembre 2005 V. Vercesi - INFN Pavia 2 S. Falciano (Roma1) Coordinatore Commissioning HLT A. Negri (Pavia) Coordinatore Event Filter Dataflow A. Nisati (Roma1) TDAQ Institute Board chair e Coordinatore Muon Slice PESA F. Parodi (Genova) Coordinatore b-tagging PESA V. Vercesi (Pavia) Deputy HLT leader e Coordinatore PESA (Physics and Event Selection Architecture) Attività italiane Trigger di Livello-1 muoni barrel (Napoli, Roma1, Roma2) Trigger di Livello-2 muoni (Pisa, Roma1) Trigger di Livello-2 pixel (Genova) Event Filter Dataflow (LNF, Pavia) Selection software steering (Genova) Event Filter Muoni (Lecce, Napoli, Pavia, Roma1) DAQ (LNF, Pavia, Roma1) Monitoring (Cosenza, Napoli, Pavia, Pisa) Pre-series commissioning (LNF, Pavia, Roma1) CSN1 Settembre 2005 V. Vercesi - INFN Pavia 3 ATLAS TDAQ system ( ) ≅ TDAQ Latency Rates Muon 40 MHz Calo LVL1 ~75 kHz ~10 ms RoI LVL2 LVL2 farm ROD ROB every million Inner Pipeline Memories ~2 ms 1 selected event ROD Readout ROD Drivers ROB Readout ROB Buffers ~1600 LEVEL-1 TRIGGER • Hardware-Based • Coarse granularity from calorimeter & muon systems LEVEL-2 TRIGGER • Regions-of-Interest “seeds” • Full granularity for all subdetector systems • Fast Rejection “steering” Event builder network ~2 kHz EF farm ~1000 CPUs ~1s EVENT FILTER • Possibly “seeded” by Level 2 • Full event access • Algorithms inherited by offline EF ~200 Hz Storage: ~ 300 MB/s CSN1 Settembre 2005 V. Vercesi - INFN Pavia High-Level Trigger 4 TDAQ Trigger e Data Acquisition hanno da sempre in fase di commissioning un doppio ruolo Come “server” per il commissioning dei rivelatori Come “client” per utilizzare le informazioni realistiche dell’esperimento per i propri studi di funzionalità e performance La situazione si è già presentata durante il Combined Testbeam 2004 Il TDAQ di ATLAS è un progetto in piena evoluzione in cui development/commissioning/exploitation sono ancora fasi molto miscelate Presentazione di risultati e indicazione delle prospettive Maggiore enfasi alle componenti con forte partecipazione italiana Descrizione del piano di commissioning generale CSN1 Settembre 2005 V. Vercesi - INFN Pavia 5 Pre-series design “Module-0” of final system 8 racks (~10% of final dataflow) CSN1 Settembre 2005 V. Vercesi - INFN Pavia 6 Pre-series reality ROS rack LVL2 rack 6 racks SDX1 Switch rack CSN1 Settembre 2005 EF rack Online rack V. Vercesi - INFN Pavia 7 Commissioning and exploitation Fully functional, small scale, version of the complete HLT/DAQ Equivalent to a detector’s ‘module 0’ Purpose and scope of the pre-series system Pre-commissioning phase Commissioning phase To validate the complete, integrated, HLT/DAQ functionality To validate the infrastructure, needed by HLT/DAQ, at point-1 To validate a component (e.g. a ROS) or a deliverable (e.g. a Level-2 rack) prior to its installation and commissioning TDAQ post-commissioning development system Validate new components (e.g. their functionality when integrated into a fully functional system) Validate new software elements or software releases before moving them to the experiment CSN1 Settembre 2005 V. Vercesi - INFN Pavia 8 Pre-Series Commissioning CSN1 Settembre 2005 V. Vercesi - INFN Pavia 9 Commissioning LVL2+ROS First measurements with full LVL2 rack feeded by ROS data Using separate Control and Data networks CSN1 Settembre 2005 V. Vercesi - INFN Pavia 10 Commissioning EF CSN1 Settembre 2005 V. Vercesi - INFN Pavia 11 Pre-series Status in USA15/SDX1 Commissioning and exploitation Large Scale Test Activities, experiences Lessons learnt Activities Monitoring, ROD Crate DAQ Algorithms development and deployment Finance Accounting 2006 requests CSN1 Settembre 2005 V. Vercesi - INFN Pavia 12 Large Scale Tests Pre-serie work will help understanding the TDAQ system in terms of functionality Forms the basis for future deployments/exploitations Complexity of ATLAS TDAQ system arises also from the size of bulk components involved Topology of communications, size of LVL2/EF farms, software, … Test scalability of HLT system using presently available large installations Understand issues like configuration, startup time, communication, control, error reporting, … UCB/TRIUMF WestGrid Cluster (http://www.westgrid.ca) 60 racks x 14 nodes = 840 Dual-CPU nodes (3 GHz CPUs / 2-4 GB RAM) CERN LXSHARE Cluster (http://batch.web.cern.ch/batch) Up to ~700 nodes (various flavours) Reference page for all tests http://atlas-tdaq-large-scale-tests.web.cern.ch CSN1 Settembre 2005 V. Vercesi - INFN Pavia 13 State transitions USR_RUNNING_TIME (default is 30 s) RUNNING Luke Warm Start Luke Warm Stop CONFIGURED Configure Unconfigure INITIAL Boot Cold Start Cold Stop Shutdown ABSENT Setup configure: load configure CSN1 Settembre 2005 start: prepareForRun startTrigger Close stop: stopTrigger unconfigure: unconfigure stopFrontEnd unload stopDataCollection stopEventFilter stopRecording V. Vercesi - INFN Pavia 15 LVL2 transition times State transistion timing quite acceptable No significant differences between 2 and 3 tier Run Control Time (secs) 2 Tier Run Control 80 70 60 50 40 30 20 10 0 0 5 10 15 20 25 setup boot conf start wait stop unconf shutdown close Configuration Id (# L2PU nodes 8 -> 256) CSN1 Settembre 2005 V. Vercesi - INFN Pavia 16 EF results @ LST Effect of realistic algorithm: TrigMoore vs HelloWorld config. / total times, s EF TrigMoore with Oracle/MySQL 800 config Oracle 700 config MySQL 600 Total test Oracle Total test MySQL 500 400 300 200 100 MySQL vs Oracle DB in TrigMoore 0 0 100 200 300 400 500 600 700 Number of processes (1EFD+2PTs) Timings HelloWorld / TrigMoore 250 config HelloWorld 200 config TrigMoore MySQL time, s backend setup HelloWorld 150 backend setup TrigMoore MySQL 100 50 0 0 100 200 300 400 500 600 Number of processes (1EFD+2PTs) CSN1 Settembre 2005 EF standalone 1EFD+2PTs / node up to 200 nodes MySQL as geometry DB used significant slow down due to access/reading geom. DB 700 EF standalone, 1EFD+2PTs / node Oracle DB – up to 160 nodes MySQL DB – up to 200 hosts MySQL works faster at “small scales”, while Oracle looks better at higher scales - to be investigated more not able to on higher than 200 nodes with any of both partitions – to be investigate further (do we need to replicated DBs ?) V. Vercesi - INFN Pavia 17 Pre-series Status in USA15/SDX1 Commissioning and exploitation Large Scale Test Activities, experiences Lessons learnt Activities Monitoring, ROD Crate DAQ Algorithms development and deployment Finance Accounting 2006 requests CSN1 Settembre 2005 V. Vercesi - INFN Pavia 18 Cosmics Tile setup MobiDAQ (Mobile DAQ): read out of 8 drawers in the pit with temporary RODemu but real TDAQ (tdaq-01-02-00), tests of electronics, cosmic muons runs CSN1 Settembre 2005 V. Vercesi - INFN Pavia 19 GNAM Monitoring chain Framework per monitoring on-line a basso livello Core: trasporto di eventi, istogrammi e comandi Plugin dinamici: decodifica e istogrammazione Possibilita’ di correlazione fra diversi rivelatori Comandi asincroni (reset, rebin, update) Status Incluso in TDAQ da aprile Utilizza i servizi disponibili per il monitoring Validato al CTB04; in uso in alcuni siti di commissioning GNAM al commissioning Acquisizione dati nell’ambito del software TDAQ Commissioning di MDT usa GNAM per monitoring online ed analisi dati Sampling completo a livello di ROS [~2 KHz per noise test, ~200 Hz per pulser] Integrazione di librerie: completato per MDT, in via di sviluppo per RPC Stato del monitoring MDT: Richiesta minimale di informazioni allo shifter (nomi camere) Output: file di istogrammi e file di testo con risultati di analisi dati per ciascuna camera e per ciascun run In sviluppo: ottimizzazione dell’analisi dati on-line installazione del presenter per la visualizzazione degli istogrammi on-line event display CSN1 Settembre 2005 V. Vercesi - INFN Pavia 21 PMP Presenter Visualizzazione asincrona on-line di istogrammi Interattivo (reset, rebin, zoom, fitting, ecc...) Operazioni grafiche su istogrammi (ROOT canvas) Grafica configurabile Status Incluso in TDAQ da settembre Utilizza i servizi disponibili per il monitoring Pienamente funzionale al CTB04 Riprogettato per nuove funzionalità e maggiore scalabilità CSN1 Settembre 2005 V. Vercesi - INFN Pavia 22 GNAM&PMP: sviluppi futuri GNAM Completare l’integrazione nel framework del TDAQ Supporto per la generazione di allarmi automatici Livelli di severità, routing Verifica delle prestazioni e delle risorse necessarie Configurazione di Core e librerie dal database del TDAQ Messaggistica e gestione degli errori software CPU, Memoria, Banda Studio della scalabilità PMP Completare la nuova versione Minimizzazione del traffico di rete Adattamento della IGUI alla nuova struttura Generazione allarmi Plugin di analisi degli istogrammi CSN1 Settembre 2005 V. Vercesi - INFN Pavia 23 ROD Crate DAQ RCD is used as interface with the RODs for Control Configuration Monitoring Statistics Event sampling Data readout (through VME) User guide for detectors developers available Validation system in Bld. 40 DAQ Commissioning – Phase 1: The ROD Emulator system will be used in order to validate all common RCD software and infrastructure After adding and validating the detector sw and hw specific items, multi crate event building will be used in the absence of the full DAQ chain CSN1 Settembre 2005 R C C M C E O Config & Control M R O R B Data readout Y O R O S ROD Emulator VMEbus memory + CORBO V. Vercesi - INFN Pavia = Memory + Registers + Interrupt capability R E B Event Fragments 24 RCD exploitation Experience from Combined Testbeam extremely useful Recall almost all detector used it in the CTB Successful workshop to put forward new requirements As a consequence, several improvements during last months Configurable interrupt handling Simplified user interface to access ordered event fragments Data driven event building for multicrate acquisition in the commissioning phase Simplified ROD emulation Hardware trigger distribution All sub-detector commissioning (but LAr…) sites use RCD MDT and RPC on the forefront BB5 integration, Point 1 with MROD, Lab testing with ROD emulators CSN1 Settembre 2005 V. Vercesi - INFN Pavia 25 Algorithms: Muon slice LVL1 simulation is the fundamental input for the measurement of the full muon vertical slice performance LVL2 and EF Muon algorithms have been extensively tested on data simulated in ATLAS Rome Physics Workshop: June 2005 LVL2: Fast Confirm the LVL1 trigger with a more precise PT estimation within a Region of Interest (RoI) Global pattern recognition, track fit, fast PT estimate via Look Up Table (LUT) with no use of time consuming fit methods Event Filter: TrigMoore Based on offline reconstruction algorithm Moore Can run seeded (reconstruction starting from RoI of previous levels) Precise PT determination General goal is now to achieve more realistic estimate of trigger selections and corresponding rates Real geometry, configuration and conditions database usage, … CSN1 Settembre 2005 V. Vercesi - INFN Pavia 26 LVL1 Coincidence Windows Athena release 10.0.4 Low pT 6 GeV Threshold Efficiency curve CSN1 Settembre 2005 Low-pT Inefficiency map V. Vercesi - INFN Pavia 27 MuFast endcap extension Early stages of project Endcap differs from Barrel -2.16 M and O station are outside B field Inhomogeneous B field – bending is local Algorithm TGC -2.18 eta Event display #17 TGC SP -2.2 MDT EM -2.22 MDT EO -2.24 -23000 -21000 -19000 -17000 -15000 -13000 ROI Z Pattern recognition and fit in TGC → position and slope in EM Extrapolate segment into MDT EM/EO → Roads in EM/EO, find hits, fit Forward Endcap PT 0 10 20 30 40 0.00E+00 -2.00E-06 Slope -4.00E-06 -6.00E-06 -8.00E-06 -1.00E-05 -1.20E-05 -1.40E-05 Next pattern recognition and fit in MDT as in mFast – not done yet Extrapolation into EI and LUT CSN1 Settembre 2005 V. Vercesi - INFN Pavia 29 MuFast: MDT miscalibration Commissioning the algorithms: realistic approach to data handling The plot shows the muFast resolution for two different scenarios: the correct MDT r-t function is used, red points a systematic shift of + 0.2 mm is added to the radius returned by the correct r-t function, blue points +10% degradation @ 50 GeV, to be compared with a + 5% expected by a naive calculation CSN1 Settembre 2005 V. Vercesi - INFN Pavia 30 TrigMoore: MDT miscalibration Single muons (with pT = 6, 10, 20, 40, 100 GeV/c, produced for the Rome Initial Layout) have been reconstructed in two different scenarios Using the correct MDT r-t relation function (red squares in pictures) Applying a systematic +0.2 mm shift on the radius obtained with the correct MDT r-t function (blue circles in pictures) The relative degradation in (pT) is +5% for muons with a 6 GeV/c transverse momentum, increases to +13% around 50 GeV/c pT resolution (Moore) CSN1 Settembre 2005 This MDT miscalibration leaves almost unaffected resolutions. V. Vercesi - INFN Pavia 32 LVL2 tracking: SiTrack Preliminary results obtained on DC1 b-jet samples at initial luminosity CSN1 Settembre 2005 V. Vercesi - INFN Pavia 33 B-tagging @ LVL2 Results obtained with the “standard” SiTrack algorithm on DC1 data b-tagging: likelihood ratio using transverse and longitudinal impact parameters Upgraded version to be tested soon: should improve both efficiency and track parameters resolution and hence significantly improve the b-tagging performance CSN1 Settembre 2005 V. Vercesi - INFN Pavia 34 Algorithms steering EM60Hy EM25Hy EM60 EM25 T2Calo T2Calo Cluster60 Cluster25 eg60Hy eg25Hy eg60 eg25 EMtrackHard EMtrackSoft g60Hy iSg60 gIsol60 l2g60i e60Hy iSe60 eIsol60 l2e60i g25Hy iSg25 gIsol25 l2g25i e25Hy iSe25 eIsol25 l2e25i g20Hy iSg20 gIsol20 l2g20i e20Hy iSe20 eIsol20 l2e20i g15Hy iSg15 eIsol15 l2e15i e15Hy iSe15 eIsol15 l2e15i TrackHardEM TrackSoft25EM EMROI EM20Hy EM15Hy CSN1 Settembre 2005 EM20 EM15 T2Calo T2Calo Cluster20 Cluster15 eg20Hy eg15Hy eg20 eg15 EMtrackSoft EMtrackSoft TrackSoft02EM TrackSoft15EM V. Vercesi - INFN Pavia 35 ATLAS Commissioning Phases Commissioning means bringing ATLAS systems from “just installed” to “operational”. It is broken in 4 phases Subsystem standalone commissioning Integrate subsystems into full detector Cosmic rays, recording data, analyze/understand, distribute to remote sites Single beam, first collisions, increasing rates, etc… A consistent part of commissioning activities will be done during the installation itself Phases will overlap since different systems may be at different development levels For the barrel calorimeter commissioning will start soon Tile calorimeter is already taking data CSN1 Settembre 2005 V. Vercesi - INFN Pavia 36 HLT Commissioning Commissioning is a set of activities which spans the time interval from the installation of the HLT racks and nodes … A rack is the elementary unit for commissioning OS, Dataflow and Online software are installed ... to the phase when the HLT is filtering physics data and recording them HLT selection algorithms are installed and running stably The complete trigger menu (at least for early physics) is configured The trigger selection efficiencies and background rejection rates are understood and can serve as input for physics measurements Phase-1 Commissioning definition is the most urgent Heavily use the Pre-series to exercise the procedures for installation and commissioning Important steps will cover the integration of detectors into full system Involve operations that have a very strong coupling with the offline commissioning activities Development of specific algorithms looking at simple data decoding (cabling,…) Final commissioning phases extend far beyond the data-taking startup (interface with run coordinator team) CSN1 Settembre 2005 V. Vercesi - INFN Pavia 37 Cosmic muons in ATLAS Concrete Air Surface building PX14/16 shielding (2.5 g/cm3) PX16 PX14 (12.6 m Inner Ø ) (18.0 m Inner Ø) ATLAS Rock ~ Silicon Geant Simulation Initial detector 600m x 600m x 200m deep (2.33 g/cm3) CSN1 Settembre 2005 V. Vercesi - INFN Pavia 38 Overall plan CSN1 Settembre 2005 V. Vercesi - INFN Pavia 39 Outlook A lot of work during this year, system entering phase of complete deployment Purchase plan proceeding as scheduled, with some minor delays (Wo)manpower situation not always healthy More help and support welcome Three big tasks awaiting us in the next months Commissioning the pre-series and extract a coherent and complete set of system performance measurements On-line trigger selections evaluation (rates, efficiencies, physics coverage,…) evolving towards more realistic approach Based on previous experiences and on already established partial results Calibration, geometry “as installed”, mis-alignment, error handling, complete trigger menus, physics analysis based on trigger objects Prepare for cosmic run next year “Cosmic” slices and trigger menu (Tile, LVL1, “digital” LVL2) CSN1 Settembre 2005 V. Vercesi - INFN Pavia 40 Pre-series Status in USA15/SDX1 Commissioning and exploitation Large Scale Test Activities, experiences Lessons learnt Activities Monitoring, ROD Crate DAQ Algorithms development and deployment Finance Accounting 2006 requests CSN1 Settembre 2005 V. Vercesi - INFN Pavia 41 Accounting Contributo INFN alla Pre-serie Read-Out System: 51 kCHF (ROS Racks) Online Computing System: 40 kCHF (Monitoring, Operations) Online Network System: 44 kCHF (Switches, FileServer) Inviati al CERN a Dicembre 2004 VV riceve in copia tutte le fatturazioni dei singoli acquisti ed un sommario mensile dello stato finanziario Contributo CORE 2005 Online Computing System: 45 kCHF (Monitoring, Operations) Inviati al CERN a Maggio 2005 Già acquisiti due file server Read-Out System: 275 kCHF (ROS Racks) Questo acquisto si espleta secondo una gara e non con un semplice market survey o price inquiry come fino ad ora avvenuto Richiesta alla Giunta l’autorizzazione per partecipare alla gara Grazie a Speranza che si è prodigata per espletare le pratiche necessarie Il CERN preferisce gestire la gara su un periodo di due anni CSN1 Settembre 2005 Omogeneità dei componenti vs miglioramento delle prestazioni Si sommano i 275 kCHF del 2006 V. Vercesi - INFN Pavia 42 Cost Profile (kCHF) 2004 2005 2006 2007 2008 2009 Total 140 0 0 0 0 0 140 Detector R/O 0 275 275 0 0 0 550 LVL2 Proc 0 0 65 195 230 160 650 Event Builder 0 0 50 50 110 70 280 Event Filter 0 0 170 180 570 380 1300 Online 0 45 135 0 0 0 180 Infrastructure 0 0 80 80 20 20 200 INFN Total 140 320 775 505 930 630 3300 TDR Total 1048 3357 4087 4544 7522 4543 25101 INFN Percentage(%) 13.4 9.5 19.0 11.1 12.4 13.9 13.1 Pre-series CSN1 Settembre 2005 V. Vercesi - INFN Pavia 43 Missioni Estere LNF Commissioning HLT/DAQ Pre-serie e pit: 6 m.u. Ferrer, Kordas (+ Miscetti, Giovannella) Pavia VV coordinatore PESA e duputy HLT: 1 m.u. Negri A. responsabile Event Filter: 1 m.u. Scannicchio D. commissioning HLT: 2 m.u. Roma1 Speranza responsabile commissioning HLT: 2 m.u. Leandro chair IB, coordinatore slice mu: 1 m.u. ROD crate DAQ e HLT/DAQ muoni : 4 m.u. Pasqualucci, Di Mattia, … CSN1 Settembre 2005 V. Vercesi - INFN Pavia 44 Milestones 30/06/2005 TDAQ - Installazione, test e uso della "Pre-serie" (~ 10% TDAQ slice) “ragionevolmente” raggiunta: ritardi accumulati soprattutto sugli acquisti delle componenti 24/12/2005 TDAQ - Installazione e test dei ROS di Pixel, LAr, Tile, Muon (interfacciamento al ROD Crate e integrazione nel DAQ) Parte del piano di commissioning in esecuzione: piccola dipendenza dalla data di consegna dei ROS 30/04/2006 Completamento dei test sulla pre-serie e definizione delle funzionalità per il supporto al commissioning TDAQ 31/08/2006 Commissioning delle slice di ROS dei rivelatori utilizzando le funzionalità della pre-serie (modulo-0 del sistema finale) 31/12/2006 Presa dati integrata dei rivelatori nel pozzo con raggi cosmici CSN1 Settembre 2005 V. Vercesi - INFN Pavia 45