Fund. Physics & Astrophysics of Supernova Remnants • Lecture #1 – What SNRs are and how are they observed – Hydrodynamic evolution on shell-type SNRs – Microphysics in SNRs – electron-ion equ • Lecture #2 – Microphysics in SNRs - shock acceleration – Statistical issues about SNRs • Lecture #3 – Pulsar wind nebulae Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Order-of magn. estimates • SN explosion – Mechanical energy: ESN 1051 erg – Ejected mass: M ej 1033 g 5M Sun • VELOCITY: Vej ESN / M ej 109 cm s 1 • Ambient medium – Density: nISM 0.1cm 3 Mej~Mswept when: 1/ 3 1019 cm 3 pc • SIZE: RSNR 3M ej / 4nISM • AGE: Rino Bandiera, OAA tSNR RSNR / Vej 1010 s 300 yr Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 “Classical” Radio SNRs • Spectacular shell-like morphologies – compared to optical – polarization – spectral index (~ – 0.5) BUT • Poor diagnostics on the physics Tycho – SN 1572 – featureless spectra (synchrotron emission) – acceleration efficiencies ? Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 A view of Galactic Plane 90cm Survey Blue: VLA 90cm Green: Bonn 11cm Red: MSX 8 m 4.5 < l < 22.0 deg (35 new SNRs found; Brogan et al. 2006) • Radio traces both thermal and non-thermal emission • Mid-infrared traces primarily warm thermal dust emission Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 SNRs in the X-ray window • Probably the “best” spectral range to observe kTe meVej2 1keV – Thermal: • measurement of ambient density EM nH ne dV – Non-Thermal: • synchrotron-emitting electrons are near the maximum energy (synchrotron cutoff) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 X-ray spectral analysis • Low-res data – Overall fit with thermal models • High-res data – Abundances of elements – Single-line spectroscopy! Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Shell-type SNR evolution a “classical” (and wrong) scenario Isotropic explosion and further evolution Homogeneous ambient medium Three phases: • Linear expansion • Adiabatic expansion • Radiative expansion Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Basic concepts of shocks • Hydrodynamic (MHD) discontinuities • Quantities conserved across the shock – – – – V Mass 2V2 1V1 2 2 Momentum 2V2 p2 1V1 p1 2 2 Energy 2V2 V2 / 2 w2 1V1 V1 / 2 w1 Entropy s2 s1 • Jump conditions Strong shock 2 (Rankine-Hugoniot) • Independent of the detailed physics Rino Bandiera, OAA If p2 , 2 , V2 p1 , 1 , V1 shock p1 1V12 1 1 2 1; V2 V1; p2 1V12 1 1 1 5/3 2 41; V2 V1 / 4; p2 31V12 / 4 Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Forward and reverse shocks Density Forward shock Reverse shock Radius • Forward Shock: into the CSM/ISM (fast) • Reverse Shock: into the Ejecta (slow) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Dimensional analysis and Self-similar models • Dimensionality of a quantity: • Dimensional constants of a problem A M p LqT r – If only two, such that M can be eliminated, THEN evolution law follows immediately! • Reduced, dimensionless diff. equations – Partial differential equations (in r and t) then transform into total differential equations (in a self-similar coordinate). Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Early evolution • Linear expansion only if ejecta behave as a “piston” 3 n g t ( r / t ) • Ejecta with V r / t and ej • Ambient medium s qr V 0 with and amb • Dimensional parameters g ML( n3)T ( n3) and q ML( s3) • Expansion law: R g / q 1/(n s ) t ( n3) /(ns ) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 A self-similar model (Chevalier 1982) • Deviations from “linear” expansion s 2, n 7 : R t 0.60 s 2, n 12 : R t 0.90 • Radial profiles – – – – – Ambient medium Forward shock Contact discontinuity Reverse shock Expanding ejecta Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Evidence from SNe • VLBI mapping (SN 1993J) • Decelerated shock • For an r -2 ambient profile ejecta profile is derived Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The Sedov-Taylor solution • After the reverse shock has reached the center • Middle-age SNRs – swept-up mass >> mass of ejecta – radiative losses are negligible • Dimensional parameters of the problem ISM : ISM ML3 ESN : ESN ML2T 2 R (t ) ( E / ) t • Evolution: • Self-similar, analytic solution 1/ 5 2 / 5 SNR Rino Bandiera, OAA SN ISM Fundamental Physics & Astrophysics of SNRs (Sedov,1959) SNA07, May 20-26, 2007 The Sedov profiles Density Pressure Temperature • Most of the mass is confined in a “thin” shell • Kinetic energy is also confined in that shell • Most of the internal energy in the “cavity” Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Thin-layer approximation • Layer thickness • Total energy • Dynamics 4 R 2 r 2 4 3 R 1 R R 1 r 3 3 2 12 4 3 pc u22 4 3 E R M ; M R 1; 3 1 2 3 d Mu 2 4 R 2 pc dt R tq d 1 3 2 2 R R R R dt 3 4q 1 2 1 ; q 3q 5 2 2 2 2 1 4 3 1 2 R 2 R5 5 1 2 E R 1 3 2 5 t ( 1)( 1) 1 t Rino Bandiera, OAA pc p2 Fundamental Physics & Astrophysics of SNRs 5 1.12 3 Correct value: 1.15 !!! SNA07, May 20-26, 2007 What can be measured (X-rays) EM nH ne dV Tx 1.28Tshock from spectral fits 1 / 5 1 / 5 2 / 5 RSed 12.5 E51 n0 t 4 pc EM / d 2 R / d kT V x Rino Bandiera, OAA E n 0 t d … if in the Sedov phase Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Testing Sedov expansion Deceleration parameter Vexp t / RSNR 2 / 5 Required: • RSNR/D (angular size) • t (reliable only for historical SNRs) • Vexp/D (expansion rate, measurable only in young SNRs) Rino Bandiera, OAA SN 1006 Tycho SNR (SN 1572) Fundamental Physics & Astrophysics of SNRs Dec.Par.==0.47 0.34 Dec.Par. SNA07, May 20-26, 2007 Other ways to “measure” the shock speed • Radial velocities from high-res spectra (in optical, but now feasible also in X-rays) • Electron temperature from modelling the (thermal) X-ray spectrum • Modelling the Balmer line profile in nonradiative shocks (see below) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 End of the Sedov phase • Sedov in numbers: 1 / 5 1 / 5 2 / 5 RSed 12.5 E51 n0 t 4 pc • When forward shock becomes radiative: with 1 (T ) 10 T erg cm s t : t t 16 tr age cool 1 3 1 n0 • Numerically: 4 / 17 9 / 17 t tr 2.9 10 4 E51 n0 yr 1 / 17 2 / 17 1 V 260 E n km s 51 0 5 / 17 7 / 17 Rtr 19 E51 n0 pc Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Beyond the Sedov phase • When t>ttr, energy no longer conserved. What is left? ISM R 3V const R t 1/ 4 • “Momentum-conserving ISM const snowplow” (Oort 1951) • WRONG !! Rarefied gas in the inner regions • “Pressure-driven snowplow” (McKee & Ostriker 1977) Internal energy Kinetic energy Rino Bandiera, OAA Eint / R 3 Pinn inn R 3 2 /(3 3 ) R t Ekin / R 3 ISMV 2 R t 2 / 7 for 5 / 3 Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Numerical results (Blondin et al 1998) 2/5 0.33 2/7=0.29 1/4=0.25 ttr Blondin et al 1998 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 An analytic model Bandiera & Petruk 2004 • Thin shell approximation dM 40 R 2 R ; dt d ( MR ) 4 pc R 2 ; dt d pc R 3 pc dt R • Analytic solution 3R 3(2 ) KR 3 1 R R 2 R 2 K R 3 HR 6 H either positive (fast branch) limit case: Oort or negative (slow branch) limit case: McKee & Ostriker H, K from initial conditions Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Inhomogenous ambient medium • Circumstellar bubble (ρ ~ r -2) – evacuated region around the star – SNR may look older than it really is • Large-scale inhomogeneities – ISM density gradients • Small-scale inhomogeneities – Quasi-stationary clumps (in optical) in young SNRs (engulfed by secondary shocks) – Thermal filled-center SNRs as possibly due to the presence of a clumpy medium Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Collisionless shocks • Coulomb mean free path – Collisional scale length (order of parsecs) – Larmor radius is much smaller (order of km) • High Mach numbers – Mach number of order of 100 • MHD Shocks – B in the range 10-100 μG • Complex related microphysics – Electron-ion temperature equilibration – Diffusive particle acceleration – Magnetic field turbulent amplification Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Electron & Ion equilibration • Naif prediction, for collisionless shocks kTe kTi 3 Vsh2 me mi 16 Te me Ti mi • But plasma turbulence may lead electrons and ion to near-equilibrium conditions m Te e Ti mi (Cargill and Papadopoulos 1988) • Coulomb equilibration on much longer scales Te Leq 2.4 T p 5/ 2 n0 3 1 cm 1 4 Vsh pc 1 1000 km s (Spitzer 1978) Tp Te dTe 0.13 ne 3 / 2 dt Te Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs c.g.s. SNA07, May 20-26, 2007 Optical emission in SN1006 • “Pure Balmer” emission in SN 1006 • Here metal lines are missing (while they dominate in recombination spectra) – Extremely metal deficient ? Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 “Non-radiative” emission • Emission from a radiative shock: – Plasma is heated and strongly ionized – Then it efficiently cools and recombines – Lines from ions at various ionization levels • In a “non-radiative” shock: – Cooling times much longer than SNR age – Once a species is ionized, recombination is a very slow process • WHY BALMER LINES ARE PRESENT ? Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The role of neutral H (Chevalier & Raymond 1978, Chevalier, Kirshner and Raymond 1980) • Scenario: shock in a partially neutral gas • Neutrals, not affected by the magnetic field, freely enter the downstream region • Neutrals are subject to: – Ionization (rad + coll) [LOST] – Excitation (rad + coll) Balmer narrow – Charge exchange (in excited lev.)Balmer broad •Charge-exchange cross section is larger at lower vrel •Fast neutral component more prominent in slower shocks Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 H-alpha profiles (Kirshner, Winkler and Chevalier 1987) (Hester, Raymond and Blair 1994) Cygnus Loop MEASURABLE QUANTITIES •FWHM of broad component (Ti !!) •Intensity ratio •FWHM of narrow component •Displacement (not if edge-on) • (T 40,000 K – why not fully ionized?) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 SNR 1E 0102.2-7219 (Hughes et al 2000, Gaetz et al 2000) • Very young and bright SNR in the SMC • Expansion velocity (6000 km s-1, if linear expansion) measured in optical (OIII spectra) and in X-rays (proper motions) Optical • Electron temperature X-rays ~ 0.4-1.0 keV, while Radio expected ion T ~ 45 keV • Very small Te/Ti, or Ti much less than expected? Missing energy in CRs? Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Lectures #2 & #3 • Shock acceleration – The prototype: SN 1006 – Physics of shock acceleration – Efficient acceleration and modified shocks • Pulsar Wind Nebulae – – – – The prototype: the Crab Nebula Models of Pulsar Wind Nebulae Morphology of PWN in theory and in practice A tribute to ALMA Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The “strange case” of SN1006 “Standard” X-ray spectrum Tycho with ASCA Hwang et al 1998 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Thermal & non-thermal • Power-law spectrum at the rims • Thermal spectrum in the interior Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Diffusive shock acceleration shock flow speed • Fermi acceleration – Converging flows – Particle diffusion (How possible, in a collisionless plasma?) X (in the shock reference frame) • Particle momentum distribution where r is the compression ratio (s=2, if r = 4) • Synchrotron spectrum S ( ) • For r = 4, power-law index of -0.5 • Irrespectively of diffusion coefficient F ( p) p ( r 2) /(r 1) p s ( s 1) / 2 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs 3 / 2 /(r 1) SNA07, May 20-26, 2007 The diffusion coefficient • Diffusion mean free path (magnetic turbulence) rg with (B / B) 2 res (η > 1) mc2 rg eB • Diffusion coefficient v mc3 3 3eB Rino Bandiera, OAA Fdiff Fundamental Physics & Astrophysics of SNRs f udiff f x SNA07, May 20-26, 2007 …and its effects • Acceleration time t • Maximum energy acc 3 1 1 r (r 1) mc3 u1 u2 u1 u2 (r 1) eBu sh2 1 2 tacc t u syn max sh / B 2 2 Bu sh B • Cut-off frequency cutoff B 2 max ush2 2 cutoff u 0.11 3 sh 1 keV 10 km s – Naturally located near the X-ray range – Independent of B Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Basics of synchrotron emission • • • • • Emitted power Characteristic frequency Power-law particle distribution If F ( p) p then S ( ) Synchrotron life time 2e 4 2 2 2 2 2 Wsyn B sin ( mc ) c B 1 2 3 3m c 0.29 3eB sin 2 syn c2 B 2 2 2mc ( s 1) / 2 s Wsyn d (mc ) dt Rino Bandiera, OAA 2 tsyn 1 c1 B Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 SN 1006 spectrum • Rather standard ( -0.6) power-law spectrum in radio (-0.5 for a classical strong shock) • Synchrotron X-rays below radio extrapolation Common effect in SNRs (Reynolds and Keohane 1999) • Electron energy distribution: N e ( E ) E s exp( E / Emax ) • Fit power-law + cutoff to spectrum: “Rolloff frequency” Rino Bandiera, OAA S ( ) exp( ( / rolloff )1/ 2 ) Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Measures of rolloff frequency • SN 1006 (Rothenflug et al 2004) • Azimuthal depencence of the break Changes in tacc? or in tsyn? Rino Bandiera, OAA η of order of unity? Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Dependence on B orientation? • Highly regular structure of SN 1006. Barrel-like shape suggested (Reynolds 1998) Direction of B ? • Brighter where B is perpendicular to the shock velocity? Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Radio – X-ray comparison (Rothenflug et al 2004) •Similar pattern (both synchrotron) •Much sharper limb in X-rays (synchrotron losses) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 (Rothenflug et al 2004) • Evidence for synchrotron losses of X-ray emitting electrons • X-ray radial profile INCONSISTENT with barrel-shaped geometry (too faint at the center) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 3-D Geometry. Polar Caps? Ordered magnetic field Polar cap geometry: (from radio polarization) electrons accelerated in regions with quasi-parallel field (as expected from the theory) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Statistical analysis (Fulbright & Reynolds 1990) Expected morphologies in radio Barrel-like SNR (under various orientations) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs Polar cap SNR (under various orientations) SNA07, May 20-26, 2007 The strength of B ? • Difficult to directly evaluate the value of the B in the acceleration zone. νrolloff is independent of it ! • “Measurements” of B must rely on some model or assumption Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Very sharp limbs in SN 1006 Chandra ASCA Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 B from limb sharpness (Bamba et al 2004) Profiles of resolved non-thermal X-ray filaments in the NE shell of SN 1006 Length scales 1” (0.01 pc) upstream 20” (0.19 pc) downstream Consistent with B ~ 30 μG Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 A diagnostic diagram • Acceleration time tacc = 270 yr • Derivation of the diffusion coefficients: u=8.9 1024 cm2s-1 d=4.2 1025 cm2s-1 (Us=2900 km s-1) to compare with Bohm=(Emaxc/eB)/3 Rino Bandiera, OAA rolloff tsync> tacc > Bohm Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Non-linear shock acceleration • Such high values of B are not expected in the case of pure field compression (3-6 μG in the ISM, 10-20 μG in the shock – or even no compression in parallel shocks) • Turbulent amplification of the field? • Possible in the case of efficient shock acceleration scenario: particles, streaming upstream, excite turbulence (e.g. Berezhko; Ellison; Blasi) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Shock modification Dynamical effects of the accelerated particles onto the shock structure (Drury and Voelk 1981) •Intrinsically non linear •Shock precursor •Discontinuity (subshock) •Larger overall compression factor •Accelerated particle distribution is no longer a power-law Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Deviations from Power-Law • In modified shocks, acc. particles with different energies see different shock compression factors. Higher energy Longer mean free path Larger compress.factor Harder spectrum Blasi Solution Thermal • Concavity in particle distribution. Standard PL (also for electrons) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Gamma-ray emission νFν • Measurement of gamma-ray emission, produced by the same electrons that emit X-ray synchrotron, would allow one to determine the value of B. Synchrotron IC Radio Rino Bandiera, OAA X-ray γ-ray Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 • On the other hand, there is another mechanism giving Gamma-ray emission – – – – accelerated ions p-p collisions pion production pion decay (gamma) • Lower limit for B • Need for “targets” (molecular cloud?) (Ellison et al 2000) • Efficiency in in accelerating ions? (The origin of Cosmic rays) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 TeV telescopes generation • H.E.S.S. Cherenkov telescopes • • • • Observations : RX J0852.0-4622 (Aharonian et al 2005) Upper limits on SN 1006 (Aharonian et al 2005) RX J1713.7-3946 (Aharonian et al 2006) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Observ. of RX J0852.0-4622 •Good matching between X-rays and gamma-rays •CO observation show the existence of a molecular cloud •Pion-decay scenario slightly favoured. Nothing proved as yet Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Indirect tests on the CRs • Some “model-dependent” side effects of efficient particle acceleration • Forward and reverse shock are closer, as effect of the energy sink • HD instabilities behavior depends on the value of eff (Blondin and Ellison 2001) (Decourchelle et al 2000) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Shock acceleration efficiency • Theory predicts (~ high) values of the efficiency of shock acceleration of ions. • Little is known for electrons • Main uncertainty is about the injection process for electrons – Shock thickness determined by the mfp of ions (scattering on magnetic turbulence) – Electrons, if with lower T, have shorter mfps – Therefore for them more difficult to be injected into the acceleration process Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The Σ–D Relationship • Empirical relation 2.38 without Cas A 2.64 with Cas A – SNR surface brightness, in radio – SNR diameter – Any physical reason for this relation ? (Case & Bhattacharya 1998) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 A basic question • Is the correlation representative of the evolution of a “typical object”? • Or is, instead, the convolution of the evolution of many different objects? • Theorists attempts to reproduce it. Rino Bandiera, OAA Berezhko & Voelk 2004 Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Dependence on ambient density (Berkhuijsen 1986) • Primary correlations are D-n, and Σ-n • Diff. ISM conditions Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The “Prototype” The Crab Nebula • Optical Thermal filaments Amorphous compon. • Radio Filled-center nebula No signs of shell • X-rays X-rays More compact neb. Jet-torus structure Crab Nebula - radio Crab Nebula – H cont Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The Crab Nebula spectrum (apart from optical filaments and IR bump) Synchrotron emission -0.8 -1.1 • Radio •Optical -0.3 •Soft X-rays -1.5 •Hard X-rays ( Bneb 0.3 mG ) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Some basic points • Synchrotron efficiency – 10-20% of pulsar spin-down power • Powered by the pulsar • High polarizations (ordered field) • No signs of any associated shell. Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Basics of synchrotron emission • • • • • Emitted power Characteristic frequency Power-law particle distribution If F ( p) p then S ( ) Synchrotron life time 2e 4 2 2 2 2 2 Wsyn B sin ( mc ) c B 1 2 3 3m c 0.29 3eB sin 2 syn c2 B 2 2 2mc ( s 1) / 2 s Wsyn d (mc ) dt Rino Bandiera, OAA 2 tsyn 1 c1 B Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Simple modelling(Pacini & Salvati 1973) • Homogeneous models (no info on structure) • Magnetic field evolution – Early phases (constant pulsar input) 3 B2R Lt t ; WB 6 2 B Lt t 1 3 R – Later phases (most energy released) t ; BR 2 6WB ( ) R( ) Rino Bandiera, OAA B Fundamental Physics & Astrophysics of SNRs L R( ) 2 t R2 SNA07, May 20-26, 2007 • Power-law injection s 1 2 1.5 – With upper energy cutoff – Continuum injection • link to the pulsar spin down • Particle evolution (adiabatic vs synchrotron losses) • Evolutionary break tsyn t br 1 c1 B(t ) 2 t br c2 B(t ) br2 c2 c12 B(t )3 t 2 • Adiabatic regime N ( , t ) j ( , t ) dt s S ( ) ( s 1) / 2 (-0.3 in radio) • Synchrotron-dominated regime N ( , t ) j ( , t ) tsyn s 1 S ( ) s / 2 Rino Bandiera, OAA (-0.8 in optical) Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Kennel & Coroniti model (1984) Basics of “Pulsar Wind Nebula” scenario • • • • • Pulsar magnetosphere ISM Pulsar wind Termination shock Pulsar Wind Nebula Interface with the ejecta (CD, FS) • Stellar ejecta Stellar ejecta • Interface with the ambient medium Pulsar Wind Nebula (RS, CD, FS) • Ambient medium (either ISM or CSM) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs Pulsar magnetosphere Pulsar wind Termination shock SNA07, May 20-26, 2007 The ingredients • Pulsar wind – super-relativistic – magnetized (toroidal field) – isotropic n proper density u radial comp 4 - speed FPoynting Fparticle B2 4 nu mc 2 • Termination shock – – – – n1u1 n2u2 mass conservation magnetic flux cons. B1u1 / 1 B2u2 / 2 E 2 2 2 2 momentum cons. 1n1u1 p1 B1 / 8 2n2u2 p2 B2 / 8 1n1u1 1 EB1 / 4 2n2u2 2 EB2 / 4 energy cons. where mc2 p (specific enthalpy) 1 n Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Large and small σ limits • Large σ – – – – weak shock flow stays super-relativistic neither field, nor density jump inefficient in converting kinetic into thermal energy • Small σ – – – – 2 , B2 B1 , n2 / 2 n1 / 1 , kT2 mc2u1 / 8 2 9 / 8 , B2 3B1 , n2 / 2 3n1 / 1 , kT2 mc2u1 / 18 strong shock flow braked to mildly relativistic speed both field and density increase kinetic energy efficienly converted Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 MHD evolution in the nebula • Steady solution (flow timescale << SNR age) – number flux cons. – momentum cons. • Asymptotic velocity – – – – - magnetic flux cons. - energy cons. V c u 1 !!! no solution for V∞=0 outer expansion Vext~1500 km s-1 (for the Crab Nebula) then σ~3 10-3 size of termination shock, from balance of wind ram pressure and nebular pressure LRn / Vext Rs Vext L Rn~10 arcsec 2 3 4 Rs c 4 Rn / 3 Rn c (wisps region) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Radial profiles • Inner part with: u r , n const , B r • Outer part with: u const , n r , B r • Equipartition in the outer part: 2 2 1 B2 4 0 r r 4 nu mc 2 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Do we expect what observed? • Injected particles – power-law, between a min and a max energy f 2 ( ) A 2( 2 1) ; 2 2 2 – only 1 free parameter (n2 and p2 from the jump conditions at the termination shock) – plus wind parameters (L, σ and γ1 ) • Energy evolution during radial advection u d dn u c1 B 2 2 dr 3n dr Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Best-fit solution • Parameters: L 5 1038 erg s 1 , rs 3 1017 cm, 1 3 106 , 0.6, 0.003 • Fit to: Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Problems -Ia • The sigma paradox – A value 1 is required, in order to get an effective slowing-down of the flow, and a high (10-20 %) synchrotron conversion efficiency – BUT the (magnetically driven) pulsar wind cannot have been produced with a low σ . – With a normal MHD evolution, the value of σ must keep constant from the acceleration region till the termination shock. Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Problems - Ib • A POSSIBLE WAY OUT – A tilted pulsar generates a striped wind. Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Problems -Ic – Magnetic reconnection in the wind zone (if possible) would dissipate the field. (Coroniti 1990) – Reconnection in the wind zone does not efficiently destroy the field. Reconnection at the termination shock is more effective. (Lyubarski & Kirk 1991) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Problems - IIa • The unexpected radio emission – Predicted radio flux is far lower (a factor ~100) than observed. – No easy way to cure it. Little freedom on the particle number. Total power is fixed: more particles mean a lower γ1. – Radio emitting electrons as a relict. Was the Crab much more powerful in the past? Ad hoc. All PWNe are radio emitters. Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Problems IIb – Can it be “Diffusive synchrotron radiation”? (Fleishman & Bietenholz 2007) Turbulence spectral index ν. – Theory only for a fully turbulent field • Total spectrum is reproduced • But observed polarization is not explained Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Non-spherical structure (Begelman & Li 1992) • Particle, moving passively along field lines (flow motion assumed to be irrotational) • Axisymmetric nebular field structure • Steady state solutions Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 3C 58 pulsar axis MHD simulations Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs van der Swaluw 2003 SNA07, May 20-26, 2007 Elongated structures of PWNe 3C 58 G5.4-0.1 pulsar spin G11.2-0.3 Crab Nebula Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Details of the structure counter-jet torus knot inner ring jet Crab Nebula Vela Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Jet sizes 40” = 0.4 pc 4’ = 6 pc Crab Nebula (Weisskopf et al 2000) PSR B1509-58 (Gaensler et al 2002) 13” = 0.2 pc 80” = 0.8 pc 3C 58 (Slane et al. 2004) Rino Bandiera, OAA Vela Pulsar (Pavlov et al. 2003) Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Simulating PWNe (Komissarov, 2006; Del Zanna et al 2004, 2006) • Relativistic MHD codes • Modelling a PWN like the Crab Velocity Rino Bandiera, OAA Magnetization Fundamental Physics & Astrophysics of SNRs Max Energy SNA07, May 20-26, 2007 Surface brightness maps Jet-Torus structure Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Ingredients • Wind parameters – magnetization (still small, but not too much) σ~0.02 – 0.1 aaa – wind anisotropy ( γeq~10 γpol ) – “filling” the jets (since B = 0) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 PWN-ejecta interaction • PWNe are confined by the associated shell-like SNR • Not only the SNR is detectable (like in the Crab) • In the Crab Nebula UV emission associated with a slow shock (against the SN ejecta) Reverse Shock Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs ISM Shocked Ejecta Shocked ISM Forward Shock Unshocked Ejecta Pulsar Termination Shock PWN Pulsar Wind PWN Shock SNA07, May 20-26, 2007 Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 A TRIBUTE TO ALMA • SNRs and PWNs are mostly non-thermal in that spectral range. – no use of spectral capabilities – use of high spatial resolution, + wide field, + photometric stability (extended sources) • Is mm-submm a “new band” for SNRs, or just an extension of the radio range? • A study of the Crab Nebula (extension of a former work, Bandiera et al 2002) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 What has been done already • Comparison of 1.3 mm (230 GHz) images (with IRAM 30-m telescope, 10” res) and radio (20 cm, VLA) maps -0.28 -0.20 230 GHz map Rino Bandiera, OAA Spectral map Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 A further emission component • Radio spectral index: -0.27 • Concave spectral index from radio to mm Real effect or artifact? (absolute photometry) • Evidence for an additional emission component Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Component B • Image obtained optimizing the subtraction of amorphous part, and filaments, of radio image (PSF matched), with best-fit weights. Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The subtracted components • Amorphous component: consistent with an extension of the spectrum to mm, with the radio spectral index (-0.27). • Filaments: consistent with spectral bending (νb~80 GHz). • Morphologically, component B resembles more the Crab in the optical than in the radio (ALTHOUGH, in the mm range, electrons of Component B do not lose energy significantly by synchrotron). Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 The integrated spectrum • Radio comp (A) • Component B, with low freq cutoff. • Evidence higher than from the error bar. • Components A and B coexist in the optical. Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 Physical scenario • Number of particles in Component B: Ntot ~ 2 1048. • Consistent with Kennel & Coroniti) • Filament magnetic fields ~6 times higher than the rest AND particle do not diffuse in/out of filaments (κ<100 κB). Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007 With ALMA • The same analysis, with a resolution 100 times higher. • Detailed mapping of Component B. • Separation of comp A and B also through differences in the polarization patterns. • Analysis of the spectral bending in individual filaments, and possibly even across the filament (B estimates). • Mapping B in filaments (aligned? ordered?) Rino Bandiera, OAA Fundamental Physics & Astrophysics of SNRs SNA07, May 20-26, 2007