Why is a Vacuum Needed? To move a particle in a (straight) line over a large distance Why is a Vacuum Needed? Atmosphere Contamination (usually water) (High)Vacuum Clean surface To provide a clean surface un pacco di caffè imballato sotto vuoto un tubo catodico in un televisore un acceleratore di particelle in fisica nucleare una camera con il miglior vuoto che attualmente si può produrre in laboratorio nostra galassia spazio intergalattico Pressione 104 Pa 10-4 Pa 10-8 Pa Numero molecole/cm3 2.7 x 1018 2.7 x 1010 2.7 x 106 10-12 Pa 10-14 Pa ? 2.7 x 102 1-10 1 al m3 Tabella 1a: La pressione in alcune tipiche applicazioni Altitudine Pressione Al livello del mare 101000 Pa Sulla vetta del Monte Bianco 50000 Pa Alla quota di crociera di un Jumbo-Jet (20000 m) 5000 Pa Su un satellite artificiale alla quota di 35000 km 2 x 10-3 Pa Sulla superficie della luna 5 x 10-5 Pa Tabella 1b: Cambiamento della pressione in funzione dell’altitudine HOW DO WE CREATE A VACUUM? VACUUM PUMPING METHODS VACUUM PUMPS (METHODS) Gas Transfer Vacuum Pump Entrapment Vacuum Pump Kinetic Vacuum Pump Positive Displacement Vacuum Pump Rotary Pump Reciprocating Displacement Pump Drag Pump Diaphragm Pump Liquid Ring Pump Gaseous Ring Pump Piston Pump Rotary Piston Pump Turbine Pump Multiple Vane Rotary Pump Dry Pump Fluid Entrainment Pump Ion Transfer Pump Ejector Pump Liquid Jet Pump Diffusion Pump Diffusion Ejector Pump Sliding Vane Rotary Pump Axial Flow Pump Gas Jet Pump Rotary Plunger Pump Radial Flow Pump Vapor Jet Pump Roots Pump Adsorption Pump Cold Trap Bulk Getter Pump Getter Pump Getter Ion Pump Sublimation Pump Self Purifying Diffusion Pump Evaporation Ion Pump Fractionating Diffusion Pump Sputter Ion Pump Molecular Drag Pump Cryopump Turbomolecular Pump Condenser BAROMETER 10.321 mm Mercury: 13.58 times heavier than water: Column is 13.58 x shorter : 10321 mm/13.58=760 mm (= 760 Torr) WATER 760 mm 29,9 in MERCURY (Page 12 manual) PRESSURE OF 1 STANDARD ATMOSPHERE: 760 TORR, 1013 mbar AT SEA LEVEL, 0O C AND 45O LATITUDE Pressure Equivalents Atmospheric Pressure (Standard) = 0 14.7 29.9 760 760 760,000 101,325 1.013 1013 gauge pressure (psig) pounds per square inch (psia) inches of mercury millimeter of mercury torr millitorr or microns pascal bar millibar THE ATMOSPHERE IS A MIXTURE OF GASES PARTIAL PRESSURES OF GASES CORRESPOND TO THEIR RELATIVE VOLUMES GAS Nitrogen Oxygen Argon Carbon Dioxide Neon Helium Krypton Hydrogen Xenon Water SYMBOL N2 O2 A CO2 Ne He Kr H2 X H2 O PERCENT BY VOLUME 78 21 0.93 0.03 0.0018 0.0005 0.0001 0.00005 0.0000087 Variable (Page 13 manual) PARTIAL PRESSURE PASCAL TORR 593 158 7.1 0.25 1.4 x 10-2 4.0 x 10-3 8.7 x 10-4 4.0 x 10-4 6.6 x 10-5 5 to 50 79,000 21,000 940 33 1.8 5.3 x 10-1 1.1 x 10-1 5.1 x 10-2 8.7 x 10-3 665 to 6650 VAPOR PRESSURE OF WATER AT VARIOUS TEMPERATURES T (O C) 100 P (mbar) (BOILING) 32 25 0 1013 (FREEZING) 6.4 0.13 -40 -78.5 (DRY ICE) 6.6 x 10 -4 -196 (LIQUID NITROGEN) 10 -24 (Page 14 manual) (Page 15 manual) Vapor Pressure of some Solids (Page 15 manual) PRESSURE RANGES RANGE PRESSURE ROUGH (LOW) VACUUM 759 TO 1 x 10 -3 (mbar) HIGH VACUUM 1 x 10 -3 TO 1 x 10 -8 (mbar) ULTRA HIGH VACUUM LESS THAN 1 x 10 -8 (mbar) (Page 17 manual) Viscous and Molecular Flow Viscous Flow (momentum transfer between molecules) Molecular Flow (molecules move independently) FLOW REGIMES Viscous Flow: Distance between molecules is small; collisions between molecules dominate; flow through momentum transfer; generally P greater than 0.1 mbar Transition Flow: Region between viscous and molecular flow Molecular Flow: Distance between molecules is large; collisions between molecules and wall dominate; flow through random motion; generally P smaller than 10-3 mbar (Page 25 manual) MEAN FREE PATH 1 P (diametro molecole) 2 2 kT Il libero cammino medio è inversamente proporzionale alla pressione ed alla sezione d’urto della molecola di gas MOLECULAR DENSITY AND MEAN FREE PATH 1013 mbar (atm) 1 x 10-3 mbar 1 x 10-9 mbar # mol/cm3 3 x 10 19 (30 million trillion) 4 x 10 13 (40 trillion) 4 x 10 7 (40 million) MFP 2.5 x 10-6 in 6.4 x 10-5 mm 2 inches 5.1 cm 31 miles 50 km Portata: P1 A’ A Flusso dV dn Q P kT dt dt P2 P1 > P2 Q è costante lungo il tubo e pertanto Conduttanza: P1 dV1 dV P2 2 dt dt Q C P1 P2 Conduttanza in parallelo: Conduttanza in serie: Q Q1 Q 2 (C1 C 2 ) (P1 P2 ) C (C1 C 2 ) C1 P1 P2 C2 C2 C1 Q1 P1 P2 Q P3 Q2 Flusso costante: Q C1 (P1 P2 ) C 2 (P2 P3 ) Flusso totale = somma dei flussi Q Q1 Q 2 (C1 C 2 ) (P1 P2 ) C (C1 C 2 ) Q P P 1 2 C 1 1 Q 1 quindi P1 P3 Q Q C1 C 2 C P2 P3 C2 per le due conduttanz e in serie : 1 1 C C1 C 2 1 VELOCITA’ DI POMPAGGIO DI UNA POMPA Ppompa Camera PCamera S Pompa C Q Q Ppompa C Pcamera Ppompa Ppompa VELOCITA’ EFFETTIVA DI POMPAGGIO DI UN SISTEMA: Seff Q Pcamera C Pcamera Ppompa Pcamera S P pompa Pcamera 1 1 S C 1 L’effetto della conduttanza è quello di ridurre la velocità di pompaggio efficace Rispetto alla velocità di pompaggio all’imbocco della pompa FLOW REGIMES Viscous Flow: Mean Free Path is less than 0.01 Characteristic Dimension Transition Flow: Mean Free Path Characteristic Dimension Molecular Flow: Mean Free Path is greater than 1 Characteristic Dimension is between 0.01 and 1 Conductance in Viscous Flow Under viscous flow conditions doubling the pipe diameter increases the conductance sixteen times. The conductance is INVERSELY related to the pipe length d P1 P2 C 138 (l / s ) l 2 4 EXAMPLE: d = 4 cm l = 100 cm d l P1 P2 = = = = diameter of tube in cm length of tube in cm inlet pressure in torr exit pressure in torr P1 = 2 torr P2 = 1 torr (Page 28 manual) C=530 l/s Conductance in Molecular Flow Under molecular flow conditions doubling the pipe diameter increases the conductance eight times. The conductance is INVERSELY related to the pipe length. C 3.81 3 d T (l / s ) l M d = diameter of tube in cm l = length of tube in cm T = temperature (K) M = A.M.U. EXAMPLE: T = 295 K (22 OC) d = 4 cm M = 28 (nitrogen) l = 100 cm C=7.9 l/s GAS LOAD Outgassing Permeation Real Leaks Diffusion GAS LOAD (Q) IS EXPRESSED IN: mbar liters per second Virtual Backstreaming Pumpdown Curve 10+1 Pressure (mbar) 10-1 Volume 10-3 10-5 Surface Desorption 10-7 Diffusion 10-9 10-11 1 10 Permeation 10 3 10 5 10 7 10 9 10 11 10 13 10 15 10 17 Time (sec)