ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Università di Pavia, Facoltà di Ingegneria SISTEMI DI TECNOLOGIE ENERGETICHE E MODELLI DI PROGRAMMAZIONE ECONOMICA G.C. Tosato – <[email protected]> Pavia, 13 Maggio 2002 - Dipartimento Ingegneria Elettrica, Aula Seminari, Piano C, - via Ferrata, 1 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT ARGOMENTI 1. 2. SETTORE ENERGETICO: PROBLEMATICHE ------------------------------------------DESCRIZIONE QUANTITATIVA: ELEMENTI E VARIABILI DEL SISTEMA, INVENTARI 3. SISTEMA: IDENTIFICAZIONE DELLE CORRELAZIONI, SPIEGAZIONE DEGLI EVENTI 4. MODELLI: RAPPRESENTAZIONE DEL SISTEMA, PROIEZIONI E VALUTAZIONI -----------------------------------------GENERATORI DI MODELLI TECNOLOGICI 5. 6. DOMANDE; ESEMPI: Modelli e scenari, Confronto di opzioni tecnologiche, Valutazione di politiche e misure ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 1 - Settore energia: domande strutturali • Che problemi ci riserva nel suo sviluppo? Riserve sufficienti? Costi compatibili? Inquinamento? Sviluppo sostenibile o no? Equità intergenerazionale? • Quanto siamo lontani dalla sostenibilità? • Quanto costa mitigare i cambiamenti climatici? • Che distanza fra prezzi attuali e costi sostenibili? • Quanto e come investire per cambiare rotta? ricerca? • Quale equilibrio di lungo termine tra sistema energetico e resto del sistema economico? Tra paesi più e meno sviluppati? Equità internazionale? ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 2a - Nodi: tecnologie energetiche Quale spazio per migliorare l’efficienza / il costo di produzione? (ingegnere, tecnico) • Settori • Parametri di caratterizzazione • Fonti di DB tecnologici • Esempio: IKARUS (Germany) • Essempio: EM (World Bank) 5 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Settori RESOURCES PRODUCTION (Supply) ENERGY TECHNOLOGIES ENDUSE (Demand) Mining Residential/Service Transformation Industry Conversion Transportation Transport & Distr Cross - sectors ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Parametri di caratterizzazione GENERAL TECHNICAL ECONOMIC ENVIRONMENTAL LABOUR & MAT. REF. technology techn. sector data quality technical availability commercial availab. prototype commercialization market share av. size existing capacity construction time technical life max. availability av. availability energy input energy output currency costs - investiment - fixed o&m - variable o&m - fuel - total ex. fuel - total incl. fuel - decommiss. GHG emissions solid waste liquid waste gaseous waste acustic impact land use materials - steel - concrete -… -… labour - construction - operation title autor editor type year access ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Esempio di caratterizzazione CO2 CO2-EQUIVALENTE g/kWh g/kWh 957,4 143,2 840 - MONETA INVESTIMENTO FISSI ANNUI VARIABILI NON FUEL FUEL TOT NON FUEL TOT $ $/KW $/KW/a $/kWh $/kWh $/kWh $/kWh 1994 1800 45 0,003 0,028 0,072 1993 1404 39 0,003 0,033 PFBC, CC COSTI NOTE Convenzionale a carbone RIFERIMENTO LOCAZIONE INPUT PRINCIPALE OUT PUT PRINCIPALE POTENZA INSTALLATA DURATA DI UTILIZZAZIONE RENDIMENTO MW h/a % EM database (1995) generica carbone energia elettrica 300 5000 37 Min. fur Wirtschaft, 1990 Germania carbone energia elettrica 642 39,6 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Data Bases IKARUS - Germany: + LP optimization / sectoral simul.models CO2DB - IIASA, Vienna: linked to simulation models EM - World Bank: linked to simulation models IPCC/TI - USA: mitigation technologies inventory DECADES - IAEA, Vienna: elc tch + energy chains GREENTIE - IEA, Paris: DB on technology providers MARKAL country DBs, linked to optimisation models other in UK, NL, USA, etc. 9 Struttura dei dati in IKARUS ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Esempio: IKARUS, Germania Processo (tecnologia) Schema di impianto Dati relativi alla tecnologia selezionata 1 0 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Data structure in EM Products (fuels) EM, World Bank Processes (technologies) Emissioni Composition (fuels) Costs (technologies) Costs (fuels) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 2b - Flussi: statistiche e bilanci energetici Quanto costa l’energia alla nazione? Quanto inquina? (statistico, economista) • Statistiche energetiche nazionali (enr_ita2.xls) • Statistiche energetiche (ex: IEA, ENERDATA) • Bilancio Energetico Nazionale (MAP/DGERM) • Bilanci Energetici di sintesi (ex: IEA) • Bilanci energetici di dettaglio (ex: IEA) • Matrici Input / Output (generali, energetiche) ITALY Code I - s érie GENERAL pib in at at c urrent DELLE 15/mar/2001 money pric es , pric es , of IS TA T nat ional in FO NTI oil of oil oil Unit of 1970 of of of of of of of of 1971 67178 1972 221 54005 124800 MICA MICA s ec tMI ors CA K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe 93300 8903 21443 4948 4100 5315 0 14380 78 196 313 0 18603 2466 740 2802 97198 9238 21001 5485 3979 5397 0 15061 91 195 317 0 20860 2323 593 2851 1973 79810 548947 384 48611 328093 229 54381 132000 1974 96738 586660 410 59175 350568 245 54751 139800 1975 122198 616932 431 74461 363647 254 55111 139100 1976 138632 601477 420 87075 365486 255 55441 133000 1977 174869 640624 448 107799 384552 269 55718 142400 1978 214398 662420 463 131895 399949 280 55955 140600 1979 253536 686482 480 154336 412906 289 56155 144100 1980 309834 726409 508 189671 442414 309 56318 149200 1981 387669 756197 529 241358 467517 327 56416 147030 1982 464030 760366 531 289137 474627 332 56502 143590 1983 545124 761991 533 342500 480312 336 56639 139980 1984 633436 769370 538 396138 483621 338 56836 139530 725760 790036 552 452431 493167 345 57005 143490 132928 138784 139867 133700 142359 142169 143240 149335 145296 143810 141097 139435 142659 102884 108019 106306 101251 107817 105458 108165 111327 107794 105790 103042 102305 104922 9866 20871 6501 4104 5694 0 17291 109 143 323 0 22790 2758 521 3110 10589 21834 7073 4450 6641 0 18661 124 134 325 0 22949 3615 483 3388 11026 21941 7897 4776 6899 0 17375 174 107 334 0 21940 4475 379 3542 10817 17652 8338 4403 6560 0 18098 253 81 362 0 21615 5637 303 3662 11859 18535 9348 4487 7269 0 19249 298 47 438 0 21754 6717 296 3966 12281 17798 9509 4398 7450 0 20523 256 38 448 0 19092 7094 273 4188 12767 16242 9314 4520 7596 0 21721 250 42 455 0 20962 7911 240 4505 12855 16971 9325 4487 7361 0 23640 250 48 465 0 20679 7982 259 4805 13782 15994 9163 4676 8077 0 23633 257 2 460 0 19441 8558 292 5010 13701 14161 8724 5142 7798 0 23606 258 0 443 0 18268 8799 297 5205 13895 12715 7976 5411 7611 0 24430 259 0 455 0 17297 9057 307 5552 13833 12326 7721 4767 7461 0 24496 257 0 462 0 17140 9643 275 5620 14615 10972 8192 5504 7902 0 25543 256 0 486 0 16740 10398 273 5933 s ec t ors s ec t ors CE S E N res identCE ial SEN CE S E N CE S E N res ident ial CE S E N of of CE S E N agric ult ure MICA MICA MICA agric ult ure MICA agric ult ure of of ot hers MICA CE S E N CE S E N CE S E N ot hers ot hers of ot hers CE S E N CE S E N MICA ENERGIA 373 44091 53832 120100 s ec MI t ors CA s ec t ors ot her of of res ident ial K t oe 1535 1213 1086 1028 822 669 662 619 553 606 697 650 599 577 624 K t oe 13232 15167 16937 17272 16461 16221 16392 14174 15789 15476 14666 13760 13030 12915 12743 K t oe K t oe K t oe K t oe K t oe K t oe K t oe K t oe 1829 612 1681 1535 1754 2 0 95 2182 474 1849 1213 1976 2 0 100 2467 416 2026 1086 2014 2 0 100 3028 386 2206 1028 2053 2 0 113 3591 304 2304 822 2188 3 0 122 4351 245 2372 669 2145 3 0 143 5057 239 2571 662 2127 5 0 155 5302 220 2705 619 2177 7 0 180 5833 193 2912 553 2160 12 0 194 5878 207 3101 606 2337 15 0 217 6255 233 3236 697 2188 14 0 223 6414 240 3357 650 2110 13 0 240 6605 253 3583 599 2092 10 0 254 7032 224 3622 577 2107 11 0 263 7582 219 3833 624 1939 12 0 265 agric ult ure ot hers of non for non energy non energy 18°c degree c oeff. K t oe K t oe K t oe K t oe K t oe K t oe K t oe energy MICA us esK t oe us es MICA us es MICA E UR day s , c oeff. c onv ers ion bas e E 18°c NE A K t oe K t oe degree degree 116 146 831 0 507 0 3717 139 119 902 0 8516 5677 1713 437 2155 0 3839 289 105 985 0 7711 6197 1735 367 1994 0 3624 585 97 1069 0 7220 6941 1816 362 2209 0 3292 882 75 1115 0 6019 6408 1801 399 2038 0 3249 1283 58 1147 0 5766 4759 1683 369 2033 0 3234 1656 57 1240 0 5615 6115 1884 341 2100 0 2740 1785 53 1303 0 5093 5896 1665 312 1919 0 3013 2066 47 1399 0 5561 5308 1940 297 2142 0 2865 2089 51 1488 0 5093 5780 2162 299 2065 0 2587 2288 59 1551 0 4203 3844 2065 308 2273 0 2398 2372 56 1608 0 3927 5652 1732 230 2062 0 2174 2442 54 1716 0 4087 4362 1507 272 1977 0 2118 2600 51 1735 0 3233 5443 1483 233 2078 0 2059 2804 53 1835 0 3202 5626 1883 257 2164 2096 2066 2061 2078 2093 2084 2082 2069 2081 2082 2072 2080 2050 2022 10200 10200 10200 10200 10200 10200 10200 10200 10200 10200 10200 10200 10200 10200 10200 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 E DELLE RIS O RS E MINERARIE za Boz 0 3617 7813 5943 1751 2120 2099 k c al/ k g k c al/ k g DEL COM M ERCIO E DELL'ARTIGIANATO DI 72994 534071 367 k MICA MICA MICA MICA ot her s ec t ors ot her res ident ial agric ult ure of MICA MICA t rans port MICA t rans port t rans port ot her res ident ial of of E CUS 213 of 1985 ref 119799 erenc e 124132 c limat e indus t ry t rans port ot her of of agric ult ure ot hers for energies K t oe MICA MICA MICA indus t ry indus t ry t rans port of ot her res ident ial of of produc t s for 40363 pric M*10**3 es , nat ional 305212 money 316032 pric M*10**3 es , in c onv MICA ent ional Kt energies oe c onv E NE ent A ional Kt energies oe , c onv ent MIional CA indus t ry of t rans port of of of of of indus t ryMICA indus t ry of of of of produc t s produc t s elec t ric it y s t eam ot hers oil gas c oal bas e 524825 c Ions S TA t ant T c Ions S TA t ant T of of of produc t s produc t s produc t s gas c oal elec t ric it y s t eam ot hers oil gas c oal of c ons umpt ion produc t s gas c oal elec t ric it y s t eam ot hers oil gas c oal elec t ric it y s t eam ot hers oil gas c oal elec t ric it y s t eam ot hers oil gas c oal elec t ric it y s t eam ot hers of of of of of of of of of of of of of of of oil M*10**3 cI urrent S TA T nat M*10**3 ional money at at c ons umpt ion c ons umpt ion c ons umpt ion energy of of of of of of of of of of of of of of of of of of of of of of of of heat ing M*10**3 1985 IS TA T in hous eholds hous eholds IS TA T energy energy energy c onv ers ion fuel M*10**3 money IS TA T E CUS hous eholds of of populat ion day s , Dies el Res idual BILANCIO ENERGETICO NAZIONALE 1999 ultima modif ica: nat ional c ons t ant c ons t ant c ons umpt ion c ons umpt ion c ons umpt ion primary primary final elec t ric it y Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion B unk ers Cons umpt ion Cons umpt ion Cons umpt ion Degree Normaliz ed gz lun folun M INISTERO DELL'INDUSTRIA GENERALE S ourc e DATA GDP GDP P riv at e P riv at e P riv at e Res ident Tot al Tot al Tot al Tot al Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion Cons umpt ion pet c fagr gaz c fagr c hac fagr elec fagr v apc fagr ot hc fagr pet c fdv r gaz c fdv r c hac fdv r elec fdv r v apc fdv r ot hc fdv r pet s o pet c fnen gaz c fnen c hac fnen dj djref DIREZIO NE Tit le GDP pibx x pibec u85 c pr c prx x c prec u85 pop t oc c p t oc c pc c t oc c f elc c f pet c find gaz c find c hac find elec find v apc find ot hc find pet c ft ra gaz c ft ra c hac ft ra elec ft ra v apc ft ra ot hc ft ra pet c fret gaz c fret c hac fret elec fret v apc fret ot hc fret pet c fres gaz c fres c hac fres elec fres v apc fres ot hc fres ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT DB statistiche energetiche base content of most energy data bases: •socio - economic - land use data, maps (?) •energy balances, flows data, prices, indicators, •balances, capacity and reserves, etc. •energy related environment data, indicators, by country (or region), year, fuel, sector, unit, etc main providers (free or at some cost) • International Energy Agency, Paris • Energy Information Administration, Washington • EUROSTAT, Luxemburg • ENERDATA s.a., Grenoble, France ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 3 - Correlazioni nel sistema Quale fenomeno spiega la situazione attuale, in termini di flussi, tecnologie, etc.? (economista dell’energia) • Analisi econometriche – Macro – Micro • Analisi dei fattori – Globale – Settoriale • Reference energy system: – Bilanci dei flussi di energia e materiali – Bilanci delle tecnologie ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 3a -Relazione econometrica base • Ln(TPES(t)) = – – – – • • • • A+ B * Ln(GDP(t)) C * ln (Pr(t)) + D*t TPES = Consumo naz. Di energia primaria eq. GDP = prodotto interno lordo Pr = prezzo medio dell’energia T = anno; B, C = elasticità; D = miglioram. tecn 1 5 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT G=Pop*(Gdp/Pop)*(En/Gdp)*(Fos/En)*(CO2/Fos) =P*W*E* F * C Energy Service G: P: W: E: F: C: Carbon Intensity CO2 Emissions Population per capita Gross Domestic Product energy intensity of the GDP share of fossil fuels on Total Primary Energy Supply carbon intensity of fossil fuel mix 3b -Analisi dei fattori: identità di Kaya 1 6 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 3b -Analisi dei fattori settoriale (IEA,99) G = k(wk*Ak * i (Si * Ii * jFij)) Energy Service Carbon Intensity G : CO2 Emissions w : Weighting factor: 1990 emissions in sector k A : Activity in Sector k S : Structure in Sector k (sub-sector i share of sector activity) I : Energy Intensity in sub-sector i F : Carbon Content of fuel j used in sub-sector i Represents Changes in: 1) supply efficiency, 2) supply fuel mix 3) end-use fuel switch 1 7 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 3b - Analisi dei fattori, esempio (IEA,99) 1975-1990 1990-1995 1995-2000 2000-2010 Baseline 2000-2010 Target Average % change per yr. 3% 2% 1% 0% -1% -2% 21% Reduction 1990-2010 (= -5% from baseline 2010) -3% CO2 Energy Services Utility End-use Fuel Mix Energy Intensity ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 3c - Reference Energy System Imports Exports Other regions Industrial N6B CM1 SD6 ICC CA0 SD7 SD0 ICM ELC NGH CS1 E LC CS2 CMA IC1 ICN THL ELC NGH ICA CCA SD8 ICU CM2 ICD SD9 CBL N6D ICP ICV ICQ ICW ICG SDE CM4 N6C ICK SDG CB1 TCD N6A CA0 CM3 CA0 ICE CC0 ICF CA0 ICO E LC CS2 CMB N6A IC1 CM3 SC6 IC ICT SC7 ICH CM5 ICR N6B COR Electricity Cuivre (Millions de tonne/ Année) ICS N6C N6D COA NGH SC8 ICI SC9 ICJ SCE FOK SCG NGH ELC COF ICX NGH N6C ICZ Residential O&Gas Proc. & Refining Commercial Other Processing NGL NGU Transport NG4 NG2 NGS DNQ DNE DNP NGW NGD NG3 NAP STK ORL GAS DBN S24 NG5 Alberta Oil & Gas NGA OHS OBS DBO DHU DBP NGA OBS DHV OHS DHP OBI REF STK OHG OBN REF NGA DBU ASP HFO ORL ORO JTF GSL OSN OBM NGA OLG OIL DBS OLS DLP NGA STK NGS DNS DNR Domestic Sources NG2 NGE Non-Energy Processing (*n) EndUse-Tech EU-Demands ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 4 – Modelli di previsione Modelli qualitativi / quantitativi (story lines vs. scenarios) Caratteristiche distintive dei modelli energetici quantitativi: - contenuto (scope) - materia: settoriale o globale; geografico: locale, nazionale, regionale, mondiale - approccio teorico (tipo di variabili e di equazioni) top-down (macro) vs. bottom-up (tecnologico) - orizzonte temporale: breve, medio, lungo 2 0 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT Short term Top-down, econometric Long term Autoregressive Sectoral Macroeconomic General equilibrium Sectoral/ technology End use models Simulation Optimization Bottom-up, engineering 4 - Alcune categorie di modelli ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – MARKAL: Diagramma di funzionamento Technological database Economic Scenario •Base Case Demands for energy services MARKAL Environmental Scenario •Cap(s)-&-Trade •Demand Elasticities •Taxes, Subsidies •Oil Price •Sectors’ Measures Equilibrium •Technology Investments and Market Shares •Emission Trajectories •Adjusted Demands for energy services •Marginal Values of Energy Forms (Prices) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – MARKAL: Variabili principali • • • • • Mining/Import/Export (r, t, c, ts) Investment (r, t, p) Capacity (r, t, p) Operation (r, t, p) Demand Loss/Increase (r, t, dm, k) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – MARKAL: Equazioni principali, 1 • Demand (r, t, dm) – Production from all “related” end-use technologies + Elastic variables End-use demand Price 5 Elastic Variables P5 P0 D D0 Demand • Commodity balance (r, t, c) prices – Production Consumption • Process activity (r, t, p) – Operation Capacity Availability Factor • Capacity transfer (r, t, p) – Capacity = Investments + “Residual” capacity ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – MARKAL: Equazioni principali, 2 • Electricity sector – Time-sliced balance (r, t, ts) • Production Consumption – Seasonal reservoir management • Essentially lets you specify seasonal plus an annual availability factor – Peaking • Total ELC capacity (1+ERESERVE) Capacity needed to meet the energy requirement – Base load • Total night production of Base-Load-Techs load-fraction total night demand Base- ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – MARKAL: Equazioni principali, 3 • User defined constraints – Any of the variables can be used to define a new constraint • Salvage – The investment cost of “unused” technology stock is refunded • Objective function – NPV of (tech costs + mining/import costs export revenues + taxes - subsidies) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – MARKAL - MACRO Energy Costs MARKAL Energy MACRO Labor Capital Y Consumption Investment ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – Variabili MACRO • • • • • • • Utility Consumption (t) Investment (t) Energy costs (t) Production (t) [Excluding energy sector] Capital stock (t) End-use demand (t, dm) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 5 – Equazioni MACRO • Utility – Disc-fact Log(Consumption) • Use – Production = Consumption + Investment + Energy Costs • Production – Production = f(Energy, Capital, Labor) • Capital accumulation ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6a – Scenari nazionali: energia CONSUMI DI ENERGIA (Mtep di energia primaria eq.) 220 Business as Usual 210 200 CASO BASE (least cost) 190 CO2 Emission cost of 10$/ton 180 CO2 EMISSION COST OF 50$ / ton 170 CO2 EMISSION COST OF 100$ / ton 160 150 1990 CO2 EMISSION COST OF 200$ / ton 1995 2000 2005 2010 2015 2020 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6a – Scenari nazionali: emissioni 550 Emissione di CO2 da fonti energetiche, MtCO2/a (bunkers e voli int. esclusi, secondo Guidelines FCCC) BAU 500 base 10$ 450 50$ 100$ 400 200$ 350 300 1990 1995 2000 2005 2010 2015 2020 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6b - Costi complessivi di mitigazione in Italia (GDP 0.5-1.0% al 2010, tassa eq. 80-250 $/tCO2) 100 CO2 reduction marginal cost curve (Markal Italy, 1998) bau 80 200$/tCO2 14 years reduction costs MMLit 60 40 100$/tCO2 10$/tCO2 50$/tCO2 20 CO2 emission reductions in 2010 0 -20 0 base 20 -40 -100 60 50$/tCO2 con P&M -60 -80 40 10$/tCO2 con P&M 80 100 200$/tCO2 con P&M 100$/tCO2 con P&M 120 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6b -Opzioni di mitigazione ottimali: sintesi Sector: Renewable sources Energy transformation Industry Residential and commercial Mobility and transport Agriculture and forestry Wastes management TOTAL CO2 Mt/a Inv. M.Eu Subs. M.Eu 11.0 14.3 28.2 26.0 26.0 13.2 21.1 139.8 11400 8200 6750 5700 30300 10050 130 72530 2900 1300 800 -500 2500 7050 100 14150 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6c - Politiche e misure di mitigazione: naz. Economic Instruments: Liberalised Internal Market in electricity and gas, Carbon tax, Subsidies (-, +), Legal instruments: Codes to improve the thermal insulation of buildings, Minimum Efficiency standards for end use devices including cars, IPPC, traffic restrictions, Voluntary agreements: RUE in industry/municipalities, Energy audits in industry, services, buildings, Phase out of the less efficient end use devices, .. Diffusion of information: Monitoring mechanism, Energy Labels of end use devices, Direct investments: Energy RD&D, procurement,… Other ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6c - Potenziale dei meccanismi flessibili Evaluation tool: Markal, an energy technology based shadow price generator The model of the Italian energy system (15000 eq.) is run first with the Indian model (+5000 equations), then with the model of USA + Canada (+60 Keq) In the base scenarios, the total systems costs are minimised. Other scenarios: with/without the Kyoto target to 2030, Italy can/cannot purchase emission permits from India, excluding / including purchases from USA, Canada. Project based analysis (Clean Development Mechanism) calculating the marginal system cost (strategic elements to guess which might be the price of Emission Permits) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6c - FlexMex:punto di vista del venditore CO2 emissions in India in 1995: 760 MtCO2/y, and a strong increase is expected: +100% in 2015, +200% in 2030 If the trade of emission rights is permitted, these emissions reduce by 10% in 2010 and by 20-25% in 2020-2030 at a marginal price of 25-35 US$’96/tCO2, by investing in Gas CC power plants instead of Coal PP (the concepts of baseline and additionality) The extra energy system costs are about 1.7% (investments), the economic surplus of selling on the emission trade market these CO2 reduction units is double (3.6% of the total s.cost) CDM or Trade of Emission Permits? ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6c - FlexMex: punto di vista del compratore Which part of the national commitments is worth buying? 67% at 10-12 US$’96/tCO2 (India->Italy exchange) 52% at 25-35 US$’96/tCO2 (India->USA-Canada-Italy) 33% at 40-80 US$’96/tCO2 (Eu proposed ceiling) 0% at about 200 US$’96/tCO2 ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6 - Studi recenti • Impact of different schemes for international flexible mechanism for mitigation (Can-US-India-It, CH-Columbia, NL-CH-SW, Nordic Eu countries) • Environmental effects of reducing/removing energy subsidies or of adding a Carbon Tax (Italy, Australia) • National MARKAL models contribute to identify climate change mitigation options and the evaluation of climate change policies (Can, National Communic. to FCCC of Aus, Be, Cz, It, Latvia, NL, Sw, Us) • Effect of including in the energy system materials, full fuel cycle analysis and endogenous technology learning for mitigation strategies ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6 - Modelli globali multiregionali • US MARKAL+MERGE for other regions (DWI-Stanford) • The Global Markal Macro Trade model with Endogenous Technology Learning (PSI-IIASA) • The SAGE Project at the US Energy Information Administration (System to Analyse Global Energy markets) with Time Stepped Technology Learning • The IEA Energy Technologies Perspectives Project adds technological insight to 2002 World Energy Outlook with a bottom-up multiregional global model • Multi-regional Global TIMES (NRCanada, GERAD) • Long time horizon multiregional global model for SERF3 (Socio Economic Research on Fusion) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 6 - Energia e ambiente su scala locale Under ETSAP and ALEP (Advanced Local Energy Planning, IEA IA on Energy Conservation in Buildings and Community Systems) District energy grids expansion, waste management, local pollution vs global mitigation (local Agenda 21), energy conservation policies in buildings, public vs private transportation, local tax/subsidies – – – – – – Germany (Mannheim, Italy (Bologna, Torino, Aosta, Basilicata, The Netherlands (Delft, Sweden (Jancheping, Norcheping, Switzerland (Geneve, China (Hong Kong, etc. 7 - Il progetto ETSAP/IEA • Present participants: Australia, Austria, Belgium, Canada, EU, Finland, Germany, Greece, Irland, Italy, Japan, Korea, The Netherlands, Norway, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States • Main goals: - to develop modelling tools that represent different systems of energy flows and technologies - to improve the knowledge of global, regional, national and local energy and environment systems - to contribute to the energy environment debate with quantitative and methodologically sound analyses 7 - Generatore di modelli MARKAL (1979) (sometimes called marginal price generating model) • fixed multi-time periods Pareto Optimal models minimising the discounted total system cost • energy flows and technologies (energy system only) • single region • with price sensitive supply curves, non price sensitive demand curves expressed in final/useful energy terms • time/Reference Energy System (RES) perfect foresight • calculated trade-off curves among cost, energy security and emissions • 2 versions of the code: FORTRAN and OMNI 7 - Versioni del MARKAL (1980-2002) • MARKAL Materials, can represent tens of pollutants and in principle the whole economy • MACRO, NLP general equilibrium version, with a single production function • MICRO, NLP partial equilibrium version, with demand elastic to prices (own/cross) • Stochastic to calculate optimal hedging strategies • Elastic Demand, linearised partial equilibrium version • Multi-regional, with endogenous trade • Endogenous Technology Learning (MIP) 7 - Evoluzione del Software • automatic creation of a reference energy system from the IEA energy balances (TEMPLATE spreadsheets) • projections of the demand for energy services from common drivers and own price elasticities • common technologies repository, with efficiencies, emissions, materials use, costs and learning of existing and new technologies • multiple model shells (MUSS, Answer, VEDA FE) • multiple model generator programs (GAMS) • multiple LP, NLP, MIP solvers • multiple / flexible reporting tools (VEDA BE, Answer) ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 7 - MARKAL/TIMES oggi • variable time periods length (TIMES) competitive partial equilibrium models maximising the discounted sum of the consumer and producer surplus • models flow and technologies of energy systems + materials + wastes + pollutants + other sectors • multi-grids, multi-regional with endogenous trade • price sensitive supply and demand curves (free units) • clairvoyant, or stochastic, or time-stepped • In each market technologies with the best marginal benefit / cost ratio are chosen, including externalities • coded in GAMS ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 7 - Equilibrio statico • hundreds of energy good and commodity markets are represented (from coal to passenger*km) • the stepwise supply and demand curves of each market are calculated including independent investment, fixed, variable, fuel, environment, material costs (based upon separate variables) • the equilibrium point in each market of the RES calculates Quantities, Prices and indicates both supply and demand marginal technologies • the distance from competitiveness of each technology and the technology gaps for reaching the desired equilibrium points are calculated by the model ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT 7 - Equilibrio dinamico The reaction of the energy system to exogenous dynamic changes is represented in the model through • starting point is the present stock of technologies and the possible future availability of well defined technologies (not upon past behaviour) • substitution among competing and time improving processes commodities, similar to the mechanism of optimal Von Neumann multiple producers/multiple commodities I/O models (not through price dependent technical coefficients of a Leontief I/O square matrix) • variable depreciation plans for investments 7 - Visita i siti web del gruppo … • www.iea.org/ • www.ecn.nl/unit_bs/etsap/main.html • www.crt.umontreal.ca/~amit/THEMODEL/ • www.ier.uni-stuttgart.de/ • www.kier.re.kr/ • www. abare.gov.au/ • www.tokai.jaeri.go.jp/ • etc. .. o contatta i ricercatori del gruppo • • • • • • • • • • • • Fridtjof Unander <[email protected]>, IEA desk officer Prof. <[email protected]> <[email protected]> Prof. Enzo Cuomo <[email protected]> <[email protected]> Gary Goldstein <[email protected]>, SW coordinator Prof Alain B. Haurie <[email protected]> Amit Kanudia <[email protected]> Barry Kapilow-Cohen <[email protected]' Anna Krook <[email protected]> Socrates Kypreos <[email protected]> <[email protected]> .. altri ricercatori del gruppo • • • • • • • • • • • • Prof. Evasio Lavagno <[email protected]> John C. Lee <[email protected]> Prof. Richard <[email protected]> Prof. Alan S. Manne <[email protected]> Ken Noble <[email protected]> Osamu Sato <[email protected]> Chris Schlenzig <[email protected]> Heesung Shin <[email protected]> Prof. Shukla <[email protected]> Peter Taylor <[email protected]> GianCarlo Tosato <[email protected]>, project head Phillip Tseng <[email protected]>, chairman ENERGY TECHNOLOGIES SYSTEMS ANALYSIS PROJECT TITOLO 1 • TESTO 1