Università Politecnica delle Marche Istituto di Biologia e Genetica Lo splicing dell’RNA • definizione • importanza • predizione Francesco Piva Struttura tipica dei geni umani esoni introni esone1 introne1 GT S P L I C I N G esone2 AG introne2 GT esone3 AG eliminazione introni introne1 introne2 esone2 esone1 esone3 unione esoni esone1 esone2 esone3 Lo splicing avviene in tutto il trascritto, anche nelle zone non codificanti attggaaaccgaaacccgttggtcacctctgcaatagccctccctccctcacttctacaattttgtgaca gtggtcttgttttctgcattctctgcttcacgtgcttgttttgttggagcgcgtttgcatgctgctttaa attctgaaatattaaaaaaatttcgaagtttttcagcacatgggatgggagttttgaatttcaatttttt aaaaacatttttctgtgattagtgccgtcgtggcacggctgttagccgcctatccggtttattcgatact ttGTGAGTTTTTTGTAACTTTATGGTCGTCGAAATGGGAAAACTTGGCCACCAATATAAGTTTGGAAAAC AATTTCCTAAAAATAAAATAATTGAACTTTTCCGATGAATAAAAAAATCGATCAGATATTCTGGAAAAAA AATCGATAAATTAATCGATTTTCTTGGAAAATACATCGAAAAATTGAGAAAAATAGAAAAATGAATGTTT TTCGATTACCGATTTATTGATTTTTCGTGAAAACTGAGTTCAGATAATTTTAAAAGCAATGTTTTTCATT TTTCAAATCAGAATCACTATAGTTTTGAAAAATCAATAATTAATTTATTGATTTTTCAATATAATTTTTT GGAAAAAATAGAAAAATCCCTTTCTAAAAGTTTTAAATTTCCAAGAAAAATTCATTTTCAAAATCACCAA CGCGCTCTATAGAGTAGTCGATGAAAATCTCCGTTAAGGGTGCATGGGCAAAACGCGCTCGAACGACAAT TGTTATTGTATGTTTGGTCTTGCAACGAAAAGTTTGAAAAATTGAAAAAAAGTTGTGTCTGATACATTTT TTTTTGGCATTTTCTGCTATTTTACACCAGAAAAAATTTAATAAACATAAAAAATCGAAATTTTTCAAGT TGGACAATTTTCAGtgagcatcttatccatcctagttctcagttcaggacttgtgcacattcgtttagag ccagatattcgcaaagccttttcaccggatgattcagatgctggataGTAAGTGACTACTGACCTTGAAG CCTCCTTCCTCCACCAGTCAGAAATAACACGTTTTTTCGCAATGTTTTTCTTTTTCTAATTCGATTTCCC TTTCTCCCTTTCTTATTGTGATTTGGTCAATGTTTGGTTGACTGGGAAGAAAATTGAATTTTTTTGGAAT TCCACTTGAAGTTAAAAAACCCAAAATAAATATTTGATCAAAAATAAATAAGAAAAAAAAGAAAACTTTA AAGCAAATGAAAATTTCGTTCGTAACTATTTTGTTAATTTTTTTAAAACTCCTATTTTAAATATATGCTT TTTGCGGAAATTTCTATAAATTTTTTTACATTTTTCAGtgaaacccgtgtctggctggaatactacggac tcgacatctatccggaacgagcattctgtatttttaccgccaagcgcgaaaattccagtattctccagga aggcgcactggcagacGTAAGTTGATTCTCCGTCACGCCCACTTTTCTGGCGGGAATTTAAAAAATTTCA Gatttatactgtggacaatcgactatcggcggcagttggctaccaagatggggatggacgaaaaaattgc gatccactctgcgacttgaacagcccctttcacttgttagcgGTAGGTGGTGGTCTAGGGTGTCATTTTT CGATTTTTTCAATTATTCGATGTTTTTAGTGAAAATCGAAAAATCTAAAAATTGAAAATCGAAAAATGAA AGAAACATTGTTTTTTGGGGACCAAACATCTTAATGAATTTAACAACAGGGAAAACTGAACAGAAACCTG GACGGTCTTATCCCATTTATCTATATTCTTAAAATGAATGATGGAGAAAAAAGTTAAAATAAAAACATTA TCAGCTTTTTGTAAGTTTTTCTCAAAAATTGTTCGATTTTTCGATTTTCTAAAAAGTCGAAAAACCGAAA CCCTTGGTGGTGGTGGTGGTGGACTAGAAAACTCTTCAACGACCACATGGCAATTTTCAGaatttgacgc ggagaaacaatggtaccacaagtgtattcacctatccggatatgccatatagcggactggatattttcct gggacttcacttgagtaatgcggattttggtaagattttttttgaaatgttaaatgaaaagttgaaaaat agtttttatgatttagccactttccagttaaaatttcatttttttaactataaaaagttctggaaaaatg aatttctAGgccgccgatcctaaaAGTgcaccatttcgcAGaAGTacGTacAGTttcccatctatccctA GTgGTcttGTtttctgcattctctgcttcacGTgcttGTtttGTtggAGcgcGTttgcatgctgctttaa attctgaaatattaaaaaaatttcgaAGTttttcAGcacatgggatgggAGTtttgaatttcaatttttt aaaaacatttttctGTgattAGTgccGTcGTggcacggctGTtAGccgcctatccgGTttattcgatact ttGTGAGTTTTTTGTAACTTTATGGTCGTCGAAATGGGAAAACTTGGCCACCAATATAAGTTTGGAAAAC AATTTCCTAAAAATAAAATAATTGAACTTTTCCGATGAATAAAAAAATCGATCAGATATTCTGGAAAAAA AATCGATAAATTAATCGATTTTCTTGGAAAATACATCGAAAAATTGAGAAAAATAGAAAAATGAATGTTT TTCGATTACCGATTTATTGATTTTTCGTGAAAACTGAGTTCAGATAATTTTAAAAGCAATGTTTTTCATT TTTCAAATCAGAATCACTATAGTTTTGAAAAATCAATAATTAATTTATTGATTTTTCAATATAATTTTTT GGAAAAAATAGAAAAATCCCTTTCTAAAAGTTTTAAATTTCCAAGAAAAATTCATTTTCAAAATCACCAA CGCGCTCTATAGAGTAGTCGATGAAAATCTCCGTTAAGGGTGCATGGGCAAAACGCGCTCGAACGACAAT TGTTATTGTATGTTTGGTCTTGCAACGAAAAGTTTGAAAAATTGAAAAAAAGTTGTGTCTGATACATTTT TTTTTGGCATTTTCTGCTATTTTACACCAGAAAAAATTTAATAAACATAAAAAATCGAAATTTTTCAAGT TGGACAATTTTCAGtgAGcatcttatccatcctAGTtctcAGTtcAGgacttGTgcacattcGTttAGAG ccAGatattcgcaaAGccttttcaccggatgattcAGatgctggatAGTAAGTGACTACTGACCTTGAAG CCTCCTTCCTCCACCAGTCAGAAATAACACGTTTTTTCGCAATGTTTTTCTTTTTCTAATTCGATTTCCC TTTCTCCCTTTCTTATTGTGATTTGGTCAATGTTTGGTTGACTGGGAAGAAAATTGAATTTTTTTGGAAT TCCACTTGAAGTTAAAAAACCCAAAATAAATATTTGATCAAAAATAAATAAGAAAAAAAAGAAAACTTTA AAGCAAATGAAAATTTCGTTCGTAACTATTTTGTTAATTTTTTTAAAACTCCTATTTTAAATATATGCTT TTTGCGGAAATTTCTATAAATTTTTTTACATTTTTCAGTgaaacccGTGTctggctggaatactacggac tcgacatctatccggaacgAGcattctGTatttttaccgccaAGcgcgaaaattccAGTattctccAGga AGgcgcactggcAGacGTAAGTTGATTCTCCGTCACGCCCACTTTTCTGGCGGGAATTTAAAAAATTTCA GatttatactGTggacaatcgactatcggcggcAGTtggctaccaAGatggggatggacgaaaaaattgc gatccactctgcgacttgaacAGcccctttcacttGTtAGcgGTAGGTGGTGGTCTAGGGTGTCATTTTT CGATTTTTTCAATTATTCGATGTTTTTAGTGAAAATCGAAAAATCTAAAAATTGAAAATCGAAAAATGAA AGAAACATTGTTTTTTGGGGACCAAACATCTTAATGAATTTAACAACAGGGAAAACTGAACAGAAACCTG GACGGTCTTATCCCATTTATCTATATTCTTAAAATGAATGATGGAGAAAAAAGTTAAAATAAAAACATTA TCAGCTTTTTGTAAGTTTTTCTCAAAAATTGTTCGATTTTTCGATTTTCTAAAAAGTCGAAAAACCGAAA CCCTTGGTGGTGGTGGTGGTGGACTAGAAAACTCTTCAACGACCACATGGCAATTTTCAGaatttgacgc ggAGaaacaatgGTaccacaAGTGTattcacctatccggatatgccatatAGcggactggatattttcct gggacttcacttgAGTaatgcggattttgGTaAGattttttttgaaatGTtaaatgaaaAGTtgaaaaat AGTttttatgatttAGccactttccAGTtaaaatttcatttttttaactataaaaAGTtctggaaaaatG Segnali per il riconoscimento degli introni Motivi conservati I segnali dei siti di splicing sono ben conservati tra le specie probabilmente la comparsa del meccanismo di splicing è molto antica basi gtttttt gtttctg gttcgtt gttgttc gtgagaa gttgcta gtgtgtt gttctgt gtgggtt gttccgg gttatgc gttacga gtgttct gtgcgtt gtgtccg gtggtcc gtggcca gtcagtt gtgctat gtgccag gtgatac 0,10 gtgacaa gtaggtt gtctgtt gtctatg gtcggtc gtcgata gtccggt gtccagg gtatttt gtcaggc gtcaaga gtacgtt gtatgct gtatacg gtaattt gtaggcc gtagaca gtacgat gtacaag 0,02 gtaagac gtaaaaa frequenze Sequenze in testa negli introni di C.elegans gtaagtt gtgagtt 0,08 0,06 0,04 gttagtt gtatgtt gtttgtt gttggtt 0,00 basi ttgaaag ttaaaag agttcag tggaaag tattcag tgaaaag tcgaaag tcaaaag aattcag tagaaag taaaaag ctttcag gtgaaag gtaaaag gggaaag ggaaaag gcgaaag gcaaaag gagaaag gaaaaag 0,05 ctgaaag ctaaaag cggaaag cgaaaag ccgaaag ccaaaag cagaaag caaaaag atgaaag ataaaag acttcag aggaaag agaaaag acgaaag acaaaag aagaaag aaaaaag frequenze Sequenze in coda negli introni di C.elegans ttttcag 0,25 0,20 0,15 atttcag 0,10 tttccag gtttcag tcttcag 0,00 Terne che precedono gli introni in C.elegans 0,14 0,12 0,08 0,06 0,04 0,02 basi ttt att cgt gct tat aat ctg ggg tcg acg cag gtc tgc agc ccc gac tta ata cga gca taa 0,00 aaa frequenze 0,10 Distribuzione dimensioni introni C.elegans 0,09 0,08 0,07 frequenze 0,06 0,05 0,04 0,03 0,02 0,01 0,00 222233344455556667778888999111111111111111111111111 036925814703692581470369258000111122233344445556667 147036925814703692581470 dimensioni Meccanismo dello splicing U2AF si lega al tratto pirimidinico a valle del sito di ramificazione Arg-Ser arly snRNP U2 si lega al sito di ramificazione (richiesta idrolisi ATP) U2AF U2AF il 3’ss è tagliato e gli esoni vengono saldati insieme, il cappio verrà deramificato le prot SR connettono U2Af con snRNP U1 U2AF snRNP U4 è rilasciato (richiesta idrolisi ATP), snRNP U6 e U2 catalizzano la transesterificazione, snRNP U5 si lega al 3’ss, il 5’ ss è tagliato e si forma il cappio U2AF si legano insieme snRNP U5 si lega al 5’ss, snRNP U6 si lega a snRNP U2 snRNP U1 è rilasciato, snRNP U5 si sposta dall’esone all’introne, snRNP U6 si lega al 5’ss introne (5’ss) snRNP U1 Sm protein G16 C5 RBD: RNA binding domain snRNP U2 si appaiano con snRNA U6 Sm protein si appaia al sito di ramificazione U17 U5 Lo splicing è tessuto specifico Muscolo cardiaco 1 1 2 Muscolo uterino 2 3 5 3 1 4 3 4 5 5 Esempio di alternative splicing di un gene umano Alternative splicing tessuto specifico Alcuni modi di fare splicing alternativo Alcuni genomi virali subiscono splicing all’interno della cellula ospite equine infectious anemia virus (EIAV) Effect of synonymous variations at CERES in CFTR exon 9 % exon 9 inclusion WT 100 90 80 70 60 50 40 30 20 10 0 5’-ACAGTTGTTGGCGGTTG-3’ TACCACCC TTATT point mutations GGTTC AA CCGC G G T Q452P V456E F A455E A G T G A G T C T C G C A C A C A C C T T C A G T T C T WT 144A 145C 146A 147G 148T 149T150G 151T 153G 154G 155C 156G 157G ex9+ ex9- Pagani, F., Buratti, E., Stuani, C., and Baralle, F. E. (2003) J Biol Chem Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A. R., and Baralle, F. E. (2003) J Biol Chem 278, 1511 The majority of random substitutions at the synonymous codons in CFTR exon 12 induce exon inclusion/1 WT AAA GAT GCT GAT TTG TAT TTA TTA GAC TCT CCT TTT GGA A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 AAG AAG AAA AAG AAG AAG AAA AAA AAA AAG AAA AAA GAC GAC GAC GAC GAC GAC GAC GAC GAT GAC GAC GAC GCA GCG GCT GCG GCC GCC GCG GCA GCC GCT GCA GCA GAT GAC GAT GAC GAC GAC GAT GAT GAC GAC GAC GAC TTG TTG TTG TTG TTG TTA TTG TTA TTA TTG TTG TTA TAC TAT TAC TAC TAT TAC TAT TAT TAT TAT TAT TAC TTA TTA TTA TTA TTG TTG TTA TTG TTG TTA TTG TTA TTA TTA TTG TTG TTG TTG TTG TTG TTG TTG TTG TTG GAT GAT GAT GAC GAC GAC GAT GAC GAT GAC GAC GAC TCA TCG TCA TCC TCT TCG TCA TCC TCA TCC TCA TCA CCC CCG CCG CCC CCG CCT CCT CCG CCC CCA CCG CCG TTC TTC TTC TTC TTC TTT TTC TTT TTC TTT TTC TTT GGA GGC GGA GGT GGT GGC GGC GGA GGC GGG GGT GGT % exon inclusion 100% 80% 60% 40% 20% 0% GAT GAC GAT GAT GAT TTG TTG TTA TTG TTA TAT TAT TAT TAT TAC TTA TTA TTA TTG TTG TTG TTG TTA TTA TTG GAT GAT GAC GAC GAT TCT TCG TCT TCA TCC CCG CCA CCG CCG CCC TTT TTT TTC TTT TTC GGG GGT GGT GGC GGC A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A1->12 WT GCA GCG GCT GCG GCA A21 GAC GAT GAT GAT GAC A18->20 AAA AAA AAG AAA AAA A13->17 A13 A14 A15 A16 A17 A18 AAA GAT GCA GAT TTG TAC TTG TTA GAC TCG CCC TTT GGC A19 AAG GAC GCA GAT TTG TAT TTG TTA GAC TCC CCA TTC GGG A20 AAG GAC GCT GAC TTA TAC TTG TTA GAT TCC CCT TTC GGT A21 AAG GAT GCA GAT TTA TAT TTA TTA GAC TCC CCT TTT GGT • Changes in splicing efficiency are not related to the use of unpreferred synonymous codons (underlined) • Nucleotide changes have different effect according to the context in which they occur Intron definition / exon definition Modello di exonic splicing enhancer mediato da proteine SR Modello di exonic splicing silencer Ricombinazione e splicing alternativo In presenza di una struttura interrotta, mutazioni neutre possono originare nuove forme di alternative splicing senza distruggere le forme funzionali già esistenti. Questa rappresenta un’opportunità per l’evoluzione di esplorare nuovi schemi aggiungendoli eventualmente a quelli precedenti. (Pagani F, Raponi M, Baralle FE. Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution Proc Natl Acad Sci U S A. 2005 May 3;102(18):6368-72.) Molte altre proteine partecipano allo splicing 9G8, CUG-BP1, DAZAP1, ETR-3, Fox-1, Fox-2, hnRNP-A0, hnRNP-A1, hnRNP-A2/B1, hnRNPC, hnRNP-D, hnRNP-D0, hnRNP DL, hnRNP E1, hnRNP E2, hnRNP-F, hnRNP G, hnRNP-H1, hnRNP-H2, hnRNP-I, hnRNP J, hnRNP K, hnRNP-L, hnRNP M, hnRNP P (TLS), hnRNP Q, hnRNP U, HTra2beta1, HuB, HuD, HuR, KSRP, Nova-1, Nova-2, nPTB, PSF, Sam68, SC35, SF1, SF2/ASF, SLM-1, SLM-2, SRp20, SRp30c, SRp38, SRp40, SRp54, SRp55, SRp75, TDP43, TIA-1, TIAL1, YB-1 … ESE, ISS: esone ESS, ISE: introne Pan troglodytes average nucleotide divergence of just 1.2% Letture consigliate Nature reviews. Genetics. 2002; 3(4): 285-298 Listening to silence and understanding nonsense: exonic mutations that affect splicing. Cartegni L, Chew SL, Krainer AR. PMID: 11967553 Nature reviews. Genetics. 2007; 8(10): 749-761. Splicing in disease: disruption of the splicing code and the decoding machinery. Wang GS, Cooper TA. PMID: 17726481