IIB on K3£ T2/Z2 orientifold + flux and D3/D7: a supergravity view-point Dr. Mario Trigiante (Politecnico di Torino) Plan of the Talk • General overview: Compactification with Fluxes and Gauged Supergravities. • Type IIB on K3 x T2/ Z2 orientifold + fluxes and D3/D7 branes. + N = 2 Gauged SUGRA • N = 2, 1, 0 vacua, super-BEH mechanism and no-scale structure. • Conclusions Superstring Theory in D=10 M-Theory in D=11 Low-energy Compactified on R1,3£ M7 Compactified on R1,3£ M6 Supergravity in D=4 •D=4 SUGRA: plethora of scalar fields (moduli from geometry of M) • Realistic models from String/M-theory ) V() 0 , From D=10,11: add fluxes (predictive, spontaneous SUSY, cosmological constant…) In D=4: gauging Type II flux-compactifications (+branes): very tentative (and rather incomplete) list of references Type II on: CY3 (orientifold) K3 x T2/Z2 Orientifold T6 /Z2 Orientifold Tp-3 x T9-p/Z2 orientifold IIB on T6 from N=8 Hep-th/ •Michelson ; Gukov, Vafa, Witten •Taylor, Vafa; Curio, Klemm, Kors, Lust • Dall’Agata; Louis, Micu • Kachru, Kallosh, Linde, Trivedi; Frey • Giryavets,Kachru,Tripathy,Trivedi • Grana,Grimm,Jockers, Louis; • D’Auria, Ferrara, M.T.; .Grimm, Louis ; • Lust, Reffert, Stieberger; Smet, Van den Bergh 9610151; 9906070; 9912152; 0012213; 0107264; 0202168; 0301240; 0308156; 0312104; 0312232;; 0401161; 0403067 ; 0406092; 0407233; Tripathy, Trivedi; Koyama, Tachikawa, Watari Andrianopoli, D’Auria, Ferrara,Lledo’ Angelantonj,D’Auria, Ferrara, M.T. D’Auria, Ferrara, M.T. 0301139; 0311191; 0302174 0312019; 0403204; Frey, Polchinski Kachru, Schulz, Trivedi D’Auria, Ferrara, Vaula’ D’Auria, Ferrara, Lledo’,Vaula’ D’Auria, Ferrara, Gargiulo,M.T.,Vaula’ Berg, Haak, Kors 0201029; 0201028; 0206241; 0211027; 0303049; 0305183; Angelantonj, Ferrara, M.T. Angelantonj, Ferrara, M.T. 0306185; de Wit, M.T., Samtleben 0311224; 0310136; IIB on K3 x T2/Z2 - orientifold with D3/D7: •Type IIB bosonic sector: NS-NS R-R gMN, , B(2) C(0),C(2),C(4) (B(2),C(2))´ (B(2)) 2 2 •SL(2,R)u global symmetry: u = C(0)- i e - 2 • Compactification to D=4 and branes: M1,3 x K3 x Low-en. brane dynamics: SYM (Coulomb ph.) on w.v. T2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 n3 D3 n7 D7 £ £ £ £ - - - - - - £ £ £ £ £ £ £ £ - - Arm, yr = yr,8+i yr,9 (r=1,…, n3) Akm, xk = xk,8+i xk,9 (k=1,…,n7) Moduli from geometry of internal manifold • K3 manifold (CY2): {x4, x5, x6, x7} ! Basis of H2(K3,R): {wI}, Complex struct. moduli (W2) Kaehler moduli (J2) I = {m, a} m=1,2,3 a=1,…,19 ( ema) $ L(e) 2 (except Vol(K3)) • T2 : Complex struct.: {xp} (p=8,9) Volume: • Orientifold proj. wrt W I2 (-)FL Surviving bulk fields W = world-sheet parity I2 (T2): xp ! - xp ) [L = (,p) = 0,…,3] L 2 (2,2) = 4 of SL(2)u x SL(2)t = SO(4) N=2 SUGRA in D=4 (ungauged) Gmn yAm A0m Define complex scalar s = C(4)K3 – i Vol(K3)E nv = 3 + n7 +n3 20 zA,1 A1m A2m A3m Akm Arm lA,1 lA,2 lA,3 lA,k lA,r S t u xk yr Mscal = MSK [L(0,n3,n7)] Cm, x MQ[ zA,a ema , Ca Scalars in non-lin. s-model ] Global symmetries: Non-linear action on scalars G = Isom(Mscal) Linear action g= A C B D 2G s Fmn Gmn Fmn g¢ Gmn Sp(2(nv+1),R) E/M duality promotes G to global sym. of f.eqs. E B. ids. Geometry of MSK : Hodge-Kaehler manifold, locally described by choice of coordinates {zi} (i=1,…,nv) and by a 2 (nv+1) -dim. section W(z) of a holomorphic symplectic bundle on MSK which fixes couplings between {zi} and the vector field-strengths: W fixes E/M action of G on vector of f. strengths (L, S=0,..., nv ) Special coordinate basis Wsc(z): zi = Xi /X0 ; F0= - F; Fi = F / zi Wsc (z) does not reproduce right couplings, i.e. right duality action of G of f. strengths ! Sp – rotation to correct W(z) ALm Correct duality action of G: W in new Sp-basis: s XL= 0 Akm SL(2)s Non-pert. Non-pert. SL(2)t pert. SL(2)u pert. ) Arm Non-pert. F If (n3=0, n7=n) or (n3=n, n7=0), MSK [L(0,n3,n7)] ! Symmetric: Switching on fluxes: hsinternal q-cycle F(q)i 0 • Fluxes surviving the orientifold projection: (dB(2), dC(2) )´ (F Integer ; I p wI Æ dxp) fixed by tadpole cancellation condition. •F(3) 0 ) Local symmetries in D=4 N=2 SUGRA : C(4) kinetic term in D=10 Stueckelberg-coupling in D=4 F(5)Æ *F(5) I (m CI– fL ALm)2 (F(5) = dC(4) +eb FÆ Fb) I Local translational invariance: CI ! CI + fL xL 4–dim. abelian gauge-group: G = { XL} $ ALm ; ALm ! ALm +m xL In Isom(MQ)=SO(4,20) 22 translational global symmetries {ZI}: CI ! CI + x I Gauge group generators XL are 4 combinations of ZI defined by the fluxes: XL= fLI ZI = fLm Zm+ hLa Za Gauging: promote G ½ G to local symmetry of action • Vector fields in co-Adj (G) ! gauge vectors • m ! rm = m + ALm XL (minimal couplings) • SUSY of action ) Fermion/gravitino SUSY shifts Fermion/gravitino mass terms V() 0 (bilinear in f. shifts) Action of XL on hyper-scalars qu described by Killing vecs. kuL expressed in terms of momentum maps PLx (x=1,2,3: SU(2) holonomy index): 2 kuL Rxuv=rvPLx PLx kmL=fmL; kaL=haL / ej [L(e)-1 xm fmL+ L(e)-1 xa haL] Scalar potential: gaugino > 0 + hyperino > 0 Vacua: bosonic b.g. SUSY preserving vacua gaugino > 0 + gravitino < 0 <F (x)>´ F0, F V(F0) = 0 , 9 killing spin.e : de(Fermi)F0 = 0 SUSY vacua Equations for Killing spinor eA de zA,a/ (fLm L-1 am+ hLb L-1 ab) XLeA = 0 de zA,1/ XL PLx sx ABeB =0 de yAm / XL PLx sx ABeB =0 de lA,i / gi j Dj XL PLx sx ABeB =0 de zA,a = 0 ) eam fLm = ema hLa = 0; • K3 c.s. moduli fixing • PL x / ej fLx hLa XL=0 • T2 c.s. t fixing • axion/dilaton u fixing de yAm = 0 ; de lA,i = 0 ) condition on fluxes N=2 vacua: fL x ´ 0 de yAm / XL fLx sx ABeB = 0 8 eA ) hLa XL=0 has solution ) hLa at most 2 indep. vecs. h2a=1=g2, h3a=2=g3 : hL a em XL=0 a hL a =0 ) ) X2 = X3 = exa=1,2´ 0 , 0 Flux has no positive norm vecs. in G3,19 •t=u • t2= -1+xk xk/2 t, u fixed s, xk, yr moduli Ca=1,2 Goldstone ) eaten by A2,3 m a=1,2 hypers V(F0)´ 0 (independent of moduli) , effective theory is no-scale N=1, 0 vacua: e2 Killing spin. : f0m=1=g0, f1m=2=g1 h2a=1=g2, h3a=2=g3 de yAm = 0 , de lA,i = 0 de lA,i=x = 0 ) xk = 0, hLa XL=0 ) X2 = X3 = 0 , Cm=1,2, Ca=1,2 Goldstone b. ) eam fLm = ema hLa =0 ) f 3L=0: flux at most 2 norm > 0 vecs.in G3,19 (primitivity of G(3)) i.e. D7 branes fixed at origin of T2 t=u=-i Mass to Am0,1,2,3 exa=1,2´ 0; ex=1,2a ´ 0 a=1,2 hypers ) K3 c.s.fix Moduli: s, yr ; Cm=3+i ej, Ca +i em=3a, (a 1,2) Mscal = x Superpotential (classical): g0 = g1 (N=1) W(F0) / e-j [XL (P1L+i P2L)]|0 / g0-g1 (moduli indep.) g0 g1 (N=0) V0(moduli) ´ 0 (no-scale) More general N=1 vacua: g 2 SL(2)t £ SL(2)u : t = u = -i ! t0, u0 f, h m t = u = -i ) f’=g.f , h’=g.h m t = t0, u = u0 Conclusions • Discussed instance of correspondence between flux compactification and gauged supergravity. • Starting framework for studying more general situations • pert. and non-pert.effects [Becker, Becker et al.; Kachru, Kallosh et al.] • gauging compact isometries ! hybrid inflation [Koyama et al.] • extended N=2 theory with tensor fields (some CI undualized) [D’Auria et.al] Vector kinetic terms described by complex matrix NLS constructed from W(z): Section W(z) in the new basis: NLS(z, z)