Reti di calcolatori e Sicurezza -- Transport Layer --- Part of these slides are adapted from the slides of the book: Computer Networking: A Top Down Approach Featuring the Internet, 2nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002. (copyright 1996-2002 J.F Kurose and K.W. Ross, All Rights Reserved) Transport Layer 3-1 Chapter 3: Transport Layer Our goals: understand principles behind transport layer services: multiplexing/demultipl exing reliable data transfer flow control congestion control learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-oriented transport TCP congestion control Transport Layer 3-2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-3 Transport services and protocols provide logical communication between app processes running on different hosts transport protocols run in end systems send side: breaks app messages into segments, passes to network layer rcv side: reassembles segments into messages, passes to app layer more than one transport protocol available to apps Internet: TCP and UDP application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Transport Layer 3-4 Transport vs. network layer network layer: logical communication between hosts transport layer: logical communication between processes relies on, enhances, network layer services Household analogy: 12 kids sending letters to 12 kids processes = kids app messages = letters in envelopes hosts = houses transport protocol = Ann and Bill network-layer protocol = postal service Transport Layer 3-5 Internet transport-layer protocols reliable, in-order delivery (TCP) congestion control flow control connection setup unreliable, unordered delivery: UDP no-frills extension of “best-effort” IP services not available: delay guarantees bandwidth guarantees application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Transport Layer 3-6 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-7 Un primo servizio Network = trasferimento di dati tra host della rete Host identificato in modo univoco da un indirizzo IP Come si fa a traferire i dati ricevuti ai processi che li hanno richiesti? Multiplexing -- demultiplexing Transport Layer 3-8 Porte e processi Porta identifica in modo univoco un processo in esecuzione su di un host Porte di “sistema”: 0 – 1023 FTP – 21, HTTP – 80, RFC 1700 Applicazioni di rete Porte maggiori di 1024 Transport Layer 3-9 Multiplexing/demultiplexing segment – unità di trasferimento di dati delle entità coinvolte al livello del trasporto TPDU: transport protocol data unit application-layer data segment header segment Ht M Hn segment P1 M application transport network P3 Demultiplexing: invio dei segmenti ricevuti ai processi receiver M M application transport network P4 M P2 application transport network Transport Layer 3-10 Multiplexing/demultiplexing Multiplexing (host invio): Raccogliere i dati, Inviarli in rete con l’indirizzo corretto Demultiplexing (host recezione): Inviare i msg ricevuti al socket corretto = socket application transport network link = process P3 P1 P1 application transport network P2 P4 application transport network link link physical host 1 physical host 2 physical host 3 Transport Layer 3-11 Demultiplexing: modalità di funzionamento host riceve un msg IP (datagrams) Ogni datagram è caratterizzato da una coppia di indirizzi IP (mittente, destinatario) ogni datagram come paylod ha un msg di trasporto Msg del trasporto ha le informazioni dulle porte del mittente e del destinatario Indirizzi IP & porte sono utilizzate per inviare il msg al socket corretto 32 bits source port # dest port # other header fields application data (message) TCP/UDP segment format Transport Layer 3-12 Connectionless demultiplexing Creazione del socket (in un qualche modo) Socket UDP sono identificati da: (dest IP address, dest port number) Alla recezione del segmento UDP: Si contralla la porta di destinazione Invia il segmento al socket in ascolto su quella porta datagrams con IP e porta del mittente diverse possono essere inviati allo stesso socket. Transport Layer 3-13 Connectionless demux DatagramSocket serverSocket = new DatagramSocket(6428); P3 SP: 6428 SP: 6428 DP: 9157 DP: 5775 SP: 9157 client IP: A P1 P1 P3 DP: 6428 SP: 5775 server IP: C DP: 6428 Client IP:B Transport Layer 3-14 Connection-oriented demux TCP socket sono identificati source IP address source port number dest IP address dest port number Host in recezione utilizza queste quattro informazioni per inviare il msg a destinazione Server puo’ operare in modalità multithreading (pertanto sono attivi diversi socket) Ogni socket attivo è identificato in modo univoco da quadrupla di valori Transport Layer 3-15 Connection-oriented demux (cont) P3 P3 SP: 80 SP: 80 DP: 9157 DP: 5775 SP: 9157 client IP: A DP: 80 P1 P1 P4 SP: 5775 server IP: C DP: 80 Client IP:B Transport Layer 3-16 Multiplexing/demultiplexing host A source port: x dest. port: 23 server B source port:23 dest. port: x Source IP: C Dest IP: B source port: y dest. port: 80 telnet app Web client host A Web client host C Source IP: A Dest IP: B source port: x dest. port: 80 Source IP: C Dest IP: B source port: x dest. port: 80 Web server B Web server Transport Layer 3-17 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-18 UDP: User Datagram Protocol [RFC 768] Protocollo di trasporto essenziale Servizio di tipo “best effort” Segmenti UDP : perdere senza ordine connectionless: no handshaking Ogni segmento UDP è gestito in modo totalmente independente dagli altri segmenti Quando è necessario utilizzare UDP? Non c’è la necessità di stabilire una connessione Applicazioni semplici: non abbiamo bisogno di informazioni di stato Header dei segmenti piccoli Nessun controllo per evitare i problemi di congestione Transport Layer 3-19 UDP Multimedia Possono permettersi una perdita di Length, in informazione bytes of UDP segment, Chi utilizza UDP including DNS header Aggiungere un meccanismo di affidabilità ad UDP error recover al livello delle applicazioni 32 bits source port # dest port # length checksum Application data (message) UDP segment format Transport Layer 3-20 UDP checksum Obiettivo: scoprire eventuali errori di trasmissione Sender: Segmenti sono visti come sequenze di interi di 16bit checksum: complemento ad 1 della somma di tutti gli interi che compongono il segmento Checksum-value viene inserito nel campo del segmento denominato checksum Receiver: Calcola il valore di checksum del segmento Controlla se il valore calcolato corrisponde al valore memorizzato nel campo checksum del segmento: NO - error detected YES - no error detected. Potrebbero essere presenti altri errori Transport Layer 3-21 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-22 Trasferimento affidabilke Punto importante nei livelli app., transport, link. Una delle problematiche piu’ importanti del networking Transport Layer 3-23 Reliable data transfer: RDT rdt_send(): invocata dal livello delle applicazioni send side udt_send(): trasferire pacchetti su di un canale non affidabile deliver_data(): invia i dati ai livelli superiori receive side rdt_rcv(): chiamata al momento della recezione dei pacchetti Transport Layer 3-24 Automi e trasferimento affidabile Trasferimento di dati (unidirezionale) Ma con meccanismi di controllo del flusso. Sender e receiver sono specificati da automi a stati finiti. event causing state transition actions taken on state transition state: when in this “state” next state uniquely determined by next event state 1 event actions state 2 Transport Layer 3-25 Rdt1.0: reliable transfer over a reliable channel Il canale di trasmissione è affidabile no bit erros no loss of packets Sender e receiver (fanno le ovvie cose!!) Wait for call from above rdt_send(data) packet = make_pkt(data) udt_send(packet) sender Wait for call from below rdt_rcv(packet) extract (packet,data) deliver_data(data) receiver Transport Layer 3-26 Rdt2.0: channel with bit errors Il canale puo’ modificare il valore dei bit presenti nei pacchetti UDP checksum Come vengono determinati questi errori di trasmissione: acknowledgements (ACKs): receiver invia al sender un messaggio di recezione (senza errori) del pacchetto negative acknowledgements (NAKs): receiver invia al sender un messaggio di errore Sender trasmette nuovamente il pacchetto quando riceve un messaggio NAK Novità (protocolli ARQ) error detection receiver feedback (ACK,NAK) Ritrasmissione Transport Layer 3-27 rdt2.0: la specifica (FSM) rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for Wait for call from ACK or udt_send(sndpkt) above NAK rdt_rcv(rcvpkt) && isACK(rcvpkt) L sender receiver rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer 3-28 rdt2.0: assenza di errori rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for Wait for call from ACK or udt_send(sndpkt) above NAK rdt_rcv(rcvpkt) && isACK(rcvpkt) L rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer 3-29 rdt2.0: Scenario con errore rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for Wait for call from ACK or udt_send(sndpkt) above NAK rdt_rcv(rcvpkt) && isACK(rcvpkt) L Anche detti protocolli Stop-and-Wait rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(NAK) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) Transport Layer 3-30 rdt2.0 ha un fatal flaw! Cosa succede quando I messaggi ACK/NAK sono corrotti? sender non è in grado di sapere cosa è successo al receiver Si possono duplicare i messaggi trasmessi Come rimediare? sender ACKs/NAKs e receiver’s ACK/NAK? Cosa accade in caso di perdita del sender ACK/NAK? Gestione dei messaggi duplicati: sender aggiunge ad ogni pacchetto il sequence number receiver non trasmette alle applicazioni i pacchetti duplicati stop and wait Sender sends one packet, then waits for receiver response Transport Layer 3-31 rdt2.1: sender, handles garbled ACK/NAKs rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || Wait for Wait for isNAK(rcvpkt) ) ACK or call 0 from udt_send(sndpkt) NAK 0 above rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) L rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isNAK(rcvpkt) ) udt_send(sndpkt) L Wait for ACK or NAK 1 Wait for call 1 from above rdt_send(data) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) Transport Layer 3-32 rdt2.1: receiver, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) Duplicato!!!! sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) Wait for 0 from below Wait for 1 from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) Transport Layer 3-33 rdt2.1 Sender: Pacchetti con numero di sequenza (basta un solo bit di informazione) Stati: In ogni stato si deve ricordare il numero di sequenz (0 o 1) Receiver: Deve controllare se il pacchetto è duplicato Ogni stato mantiene informazione su quale numero di sequenza si attende Transport Layer 3-34 rdt2.2: Protocollo NAK-free Come rdt 2.1 ma ... Invece di inviare un msg NAK, il receiver invia un msg di ACK per l’ultimo pacchetto ricevuto correttamente Informazioni di stato “receiver must explicitly include seq # of pkt being ACKed” ACK duplicato (lato sender) = NAK: ristrasmissione del pkt corrente Transport Layer 3-35 rdt2.2: sender e receiver (in pillole) rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || Wait for Wait for isACK(rcvpkt,1) ) ACK call 0 from 0 udt_send(sndpkt) above sender FSM fragment rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq1(rcvpkt)) sndpkt = make_pkt(ACK1, chksum) udt_send(sndpkt) Wait for 0 from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) receiver FSM fragment L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK0, chksum) udt_send(sndpkt) Transport Layer 3-36 rdt3.0: Canali con errori e perdita di pacchetti Ipotesi aggiuntive: Il canale di trasmissione puo’ perdere pacchetti (dati o ACK) checksum, seq. #, ACK, sono sufficienti? Come si gestisce la perdita di pacchetti? sender attende un certo periodo di tempo prima di trasmettere nuovamente l’informazione Una possibile soluzione: sender rimane in attesa per un periodo di tempo ragionevole I pkt vengono trasmessi nuovamente se non viene ricevuto un ACK in questo periodo di tempo Se la consegna del pkt (ACK) è solo ritardata (non avviene perdita) Duplicazione: gestita tramite il # di sequenza receiver specifica il # di sequenza del pkt ricevuto countdown timer Transport Layer 3-37 rdt3.0 sender rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,1) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,0) ) timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) stop_timer stop_timer timeout udt_send(sndpkt) start_timer L Wait for ACK0 Wait for call 0from above L rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) ) Wait for ACK1 Wait for call 1 from above rdt_send(data) rdt_rcv(rcvpkt) L sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) start_timer Transport Layer 3-38 rdt3.0: esempio Transport Layer 3-39 rdt3.0: esempio Transport Layer 3-40 rdt3.0 rdt3.0 funziona correttamente ma esibisce dei problemi di efficienza relativi all’uso della banda di trasmissione Transport Layer 3-41 rdt3.0: stop-and-wait sender receiver first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK RTT ACK arrives, send next packet, t = RTT + L / R U = sender L/R RTT + L / R = .008 30.008 = 0.00027 microsec onds Transport Layer 3-42 Pipeline Pipelining: il mittente invia un certo numero di pacchetti senza attendere il relativo ACK Operare correttamente con i # di sequenza Buffer (mittente e destinatario) Due tipi di protocolli: go-Back-N, selective repeat Transport Layer 3-43 Pipelining: increased utilization sender receiver first packet bit transmitted, t = 0 last bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK last bit of 2nd packet arrives, send ACK last bit of 3rd packet arrives, send ACK RTT ACK arrives, send next packet, t = RTT + L / R Increase utilization by a factor of 3! U sender = 3*L/R RTT + L / R = .024 30.008 = 0.0008 microsecon ds Transport Layer 3-44 Protocolli “sliding window” Transport Layer 3-45 Go-Back-N Sender: Header; k-bit per memorizzare i numeri di sequenza dei pkt. Si permette di avere una “finestra fino ad N”, di pkt consecutivi in cui non è stato ricevuto il relativo ack ACK(n): ACK cumulativo dei pkt con # minore di n timer per i pkt in trasmissione timeout(n): trasmettere il pkt n e tutti i pkt nella parte superiore della finestra di trasmissione Transport Layer 3-46 GBN: lato sender rdt_send(data) L base=1 nextseqnum=1 if (nextseqnum < base+N) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ } else refuse_data(data) Wait rdt_rcv(rcvpkt) && corrupt(rcvpkt) timeout start_timer udt_send(sndpkt[base]) udt_send(sndpkt[base+1]) … udt_send(sndpkt[nextseqnum-1]) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) base = getacknum(rcvpkt)+1 If (base == nextseqnum) stop_timer else start_timer Transport Layer 3-47 GBN: lato receiver default udt_send(sndpkt) L Wait expectedseqnum=1 sndpkt = make_pkt(expectedseqnum,ACK,chksum) rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(expectedseqnum,ACK,chksum) udt_send(sndpkt) expectedseqnum++ ACK viene inviato per i pkt corretti aventi il piu’ slto numero seq # ACK duplicati Variabile di stato: expectedseqnum out-of-order pkt: discard -> no buffering! ACK pkt con il piu’ alto seq # Transport Layer 3-48 GBN in action Transport Layer 3-49 Selective Repeat receiver invia ACK di tutti i pkt ricevuti correttamente. Buffer per gestire l’ordine dei pacchetti Sender invia nuovamente i pkt senza ACK Sender attiva timer per ogni pkt senza ACK La finestra del sender: N # di sequenza consecutivi Limite superiore alla dimensione della finestra Transport Layer 3-50 Selective repeat: sender, receiver windows Transport Layer 3-51 Selective repeat sender data from above : receiver pkt n in [rcvbase, rcvbase+N-1] if next available seq # in send ACK(n) timeout(n): in-order: deliver (also window, send pkt resend pkt n, restart timer ACK(n) in [sendbase,sendbase+N]: mark pkt n as received if n smallest unACKed pkt, advance window base to next unACKed seq # out-of-order: buffer deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-N,rcvbase-1] ACK(n) otherwise: ignore Transport Layer 3-52 Selective repeat Transport Layer 3-53 Selective repeat seq #’s: 0, 1, 2, 3 window size=3 receiver non riesce a discriminare i due comportamenti Window di dimensione inferiore allo spazio dei numeri di sequenza Transport Layer 3-54 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-55 TCP: Overview point-to-point: one sender, one receiver reliable, in-order byte stream: no “message boundaries” pipelined: TCP congestion and flow control set window size send & receive buffers socket door application writes data application reads data TCP send buffer TCP receive buffer RFCs: 793, 1122, 1323, 2018, 2581 full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) init’s sender, receiver state before data exchange flow controlled: sender will not socket door overwhelm receiver segment Transport Layer 3-56 TCP segment structure 32 bits URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) source port # dest port # sequence number acknowledgement number head not UA P R S F len used checksum Receive window Urg data pnter Options (variable length) counting by bytes of data (not segments!) # bytes rcvr willing to accept application data (variable length) Transport Layer 3-57 Il segment TCP Connessione: (SrcPort, SrcIPAddr, DsrPort, DstIPAddr) window + flow control acknowledgment, SequenceNum, RcvdWinow Data(SequenceNum) Sender Receiver Acknowledgment + RcvdWindow Flags SYN, FIN, RESET, PUSH, URG, ACK Checksum pseudo header + TCP header + data Transport Layer 3-58 TCP seq. #’s and ACKs Seq. #’s: byte stream “number” of first byte in segment’s data ACKs: seq # of next byte expected from other side cumulative ACK Q: how receiver handles out-of-order segments A: TCP spec doesn’t say, - up to implementor Host A User types ‘C’ Host B host ACKs receipt of ‘C’, echoes back ‘C’ host ACKs receipt of echoed ‘C’ simple telnet scenario time Transport Layer 3-59 TCP Round Trip Time and Timeout Q: how to set TCP timeout value? longer than RTT but RTT varies too short: premature timeout unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions SampleRTT will vary, want estimated RTT “smoother” average several recent measurements, not just current SampleRTT Transport Layer 3-60 TCP Round Trip Time and Timeout EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT Exponential weighted moving average influence of past sample decreases exponentially fast typical value: = 0.125 Transport Layer 3-61 Example RTT estimation: RTT: gaia.cs.umass.edu to fantasia.eurecom.fr 350 RTT (milliseconds) 300 250 200 150 100 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 time (seconnds) SampleRTT Estimated RTT Transport Layer 3-62 TCP Round Trip Time and Timeout Setting the timeout EstimtedRTT plus “safety margin” large variation in EstimatedRTT -> larger safety margin first estimate of how much SampleRTT deviates from EstimatedRTT: DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| (typically, = 0.25) Then set timeout interval: TimeoutInterval = EstimatedRTT + 4*DevRTT Transport Layer 3-63 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-64 TCP: Sender Pseudo Codice 00 sendbase = initial_sequence number 01 nextseqnum = initial_sequence number 02 03 loop (forever) { 04 switch(event) 05 event: data received from application above 06 create TCP segment with sequence number nextseqnum 07 start timer for segment nextseqnum 08 pass segment to IP 09 nextseqnum = nextseqnum + length(data) 10 event: timer timeout for segment with sequence number y 11 retransmit segment with sequence number y 12 compute new timeout interval for segment y 13 restart timer for sequence number y 14 event: ACK received, with ACK field value of y 15 if (y > sendbase) { /* cumulative ACK of all data up to y */ 16 cancel all timers for segments with sequence numbers < y 17 sendbase = y 18 } 19 else { /* a duplicate ACK for already ACKed segment */ 20 increment number of duplicate ACKs received for y 21 if (number of duplicate ACKS received for y == 3) { 22 /* TCP fast retransmit */ 23 resend segment with sequence number y 24 restart timer for segment y 25 } 26 } /* end of loop forever */ Transport Layer 3-65 TCP reliable data transfer TCP creates rdt service on top of IP’s unreliable service Pipelined segments Cumulative acks TCP uses single retransmission timer Retransmissions are triggered by: timeout events duplicate acks Initially consider simplified TCP sender: ignore duplicate acks ignore flow control, congestion control Transport Layer 3-66 TCP sender events: data rcvd from app: Create segment with seq # Se scade un timer, lo seq # is byte-stream rifaccio ripartire con valore time-out doppio. number ofdifirst data Se ok, risettato al valore byte in segment ottenuto con estimatedRTT e devRTT start timer if not already running (think of timer as for oldest unacked segment) expiration interval: TimeOutInterval timeout: retransmit segment that caused timeout restart timer Ack rcvd: If acknowledges previously unacked segments update what is known to be acked start timer if there are outstanding segments Transport Layer 3-67 NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } } /* end of loop forever */ TCP sender (simplified) Comment: • SendBase-1: last cumulatively ack’ed byte Example: • SendBase-1 = 71; y= 73, so the rcvr wants 73+ ; y > SendBase, so that new data is acked Transport Layer 3-68 TCP: retransmission scenarios Host A X loss Sendbase = 100 SendBase = 120 SendBase = 100 time SendBase = 120 lost ACK scenario Host B Seq=92 timeout Host B Seq=92 timeout timeout Host A time premature timeout Transport Layer 3-69 TCP retransmission scenarios (more) timeout Host A Host B X loss SendBase = 120 time Cumulative ACK scenario Transport Layer 3-70 TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver TCP Receiver action Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Arrival of in-order segment with expected seq #. One other segment has ACK pending Immediately send single cumulative ACK, ACKing both in-order segments Arrival of out-of-order segment higher-than-expect seq. # . Gap detected Immediately send duplicate ACK, indicating seq. # of next expected byte Arrival of segment that partially or completely fills gap Immediate send ACK, provided that segment startsat lower end of gap Transport Layer 3-71 Fast Retransmit Time-out period often relatively long: long delay before resending lost packet Detect lost segments via duplicate ACKs. Sender often sends many segments back-toback If segment is lost, there will likely be many duplicate ACKs. If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: fast retransmit: resend segment before timer expires Transport Layer 3-72 Fast retransmit algorithm: event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y } a duplicate ACK for already ACKed segment fast retransmit Transport Layer 3-73 Commenti ACK comulativi Sender Sendbase = piu’ piccolo numero di sequenza dei segmenti trasmessi ma di cui non si è ancora ricevuto ACK Nextseqnum = numero di sequenza del prossimo dato da inviare Transport Layer 3-74 TCP vs GBN Sender invia i segmenti 1, 2, …, N. Assumiamo che i segmenti arrivino correttamente al destinatario. ACK(n) viene perduto (unico ACK perduto) GBN trasmette nuovamente i segmenti ?? TCP trasmette nuovamente i segmenti ?? Transport Layer 3-75 TCP vs GBN Sender invia i segmenti 1, 2, …, N. Assumiamo che i segmenti arrivino correttamente al destinatario. ACK(n) viene perduto (unico ACK perduto) GBN trasmette nuovamente i segmenti n, n+1 , …, N TCP trasmette nuovamente al piu’ il segmento n (se il timeout di n scatta prima dell’arrivo di ACK(n+1)) Transport Layer 3-76 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-77 TCP Flow Control receive side of TCP connection has a receive buffer: flow control sender won’t overflow receiver’s buffer by transmitting too much, too fast speed-matching app process may be service: matching the send rate to the receiving app’s drain rate slow at reading from buffer Transport Layer 3-78 TCP Flow control: how it works Rcvr advertises spare (Suppose TCP receiver discards out-of-order segments) spare room in buffer room by including value of RcvWindow in segments Sender limits unACKed data to RcvWindow guarantees receive buffer doesn’t overflow = RcvWindow = RcvBuffer-[LastByteRcvd LastByteRead] Transport Layer 3-79 Sliding Window Sending application Receiving application TCP LastByteWritten LastByteAcked LastByteSent Sending side LastByteAcked < = LastByteSent LastByteSent < = LastByteWritten buffer bytes between LastByteAcked and LastByteWritten TCP LastByteRead NextByteExpected LastByteRcvd Receiving side LastByteRead < NextByteExpected NextByteExpected < = LastByteRcvd +1 buffer bytes between NextByteRead and LastByteRcvd Transport Layer 3-80 TCP Flow Control: variabili di stato Send buffer size: MaxSendBuffer Receive buffer size: MaxRcvBuffer Receiving side LastByteRcvd - LastByteRead < = MaxRcvBuffer AdvertisedWindow = MaxRcvBuffer - (NextByteExpected NextByteRead) Sending side LastByteSent - LastByteAcked < = AdvertisedWindow EffectiveWindow = AdvertisedWindow - (LastByteSent LastByteAcked) LastByteWritten - LastByteAcked < = MaxSendBuffer block sender if (LastByteWritten - LastByteAcked) + y > MaxSenderBuffer Transport Layer 3-81 TCP Controllo del flusso: azioni Inviare ACK all’arrivo di segmenti Se ho finito di spedire e ho AdvertisedWindow = 0? Problema: il ricevente non sapra’ mai se ho di nuovo spazio nel buffer il ricevente se ha AdvertisedWindow = 0 continua a spedire ack fino a che si libera il buffer Transport Layer 3-82 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-83 TCP Connection Management Recall: TCP sender, receiver establish “connection” before exchanging data segments initialize TCP variables: seq. #s buffers, flow control info (e.g. RcvWindow) client: connection initiator Socket clientSocket = new Socket("hostname","port number"); server: contacted by client Socket connectionSocket = welcomeSocket.accept(); Three way handshake: Step 1: client host sends TCP SYN segment to server specifies initial seq # no data Step 2: server host receives SYN, replies with SYNACK segment server allocates buffers specifies server initial seq. # Step 3: client receives SYNACK, replies with ACK segment, which may contain data Transport Layer 3-84 TCP Connection Management (cont.) Closing a connection: client closes socket: clientSocket.close(); client close Step 1: client end system close FIN, replies with ACK. Closes connection, sends FIN. timed wait sends TCP FIN control segment to server Step 2: server receives server closed Transport Layer 3-85 TCP Connection Management (cont.) Step 3: client receives FIN, replies with ACK. client server closing Enters “timed wait” will respond with ACK to received FINs closing Step 4: server, receives Note: with small modification, can handle simultaneous FINs. timed wait ACK. Connection closed. closed closed Transport Layer 3-86 TCP Connection Management (cont) TCP server lifecycle TCP client lifecycle Transport Layer 3-87 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-88 Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control! manifestations: lost packets (buffer overflow at routers) long delays (queueing in router buffers) a top-10 problem! Transport Layer 3-89 Le caratteristiche del problema Risorse allocate per evitare la congestione Controllo della congestione se (e quando) si manifesta Router 1.5-Mbps T1 link Destination Source 2 Implementazione Host (protocolli del livello di trasporto) Router (politiche per la gestione delle code) Quale modello di servizio best-effort (Internet) QoS quality of service (Futuro) Transport Layer 3-90 Contesto Sequenze di pacchetti che viaggiono nella rete Router hanno poca informazione sullo stato della rete Source 1 Router Destination 1 Router Source 2 Router Destination 2 Source 3 Transport Layer 3-91 Causes/costs of congestion: scenario 1 Host A two senders, two receivers one router, infinite buffers no retransmission Host B lout lin : original data unlimited shared output link buffers large delays when congested maximum achievable throughput Transport Layer 3-92 Troughput per la connessione Throughput per la connessione = numero di byte al secondo al receiver in funzione della velocità di spedizione Grandi ritardi quando la velocità dei pacchetti in arrivo è prossima alla capacità del router Transport Layer 3-93 Causes/costs of congestion: scenario 2 one router, finite buffers sender retransmission of lost packet Host A Host B lin : original data l'in : original data, plus retransmitted data lout finite shared output link buffers Transport Layer 3-94 Congestione La velocità del sender è uguale al carico offerto dalla rete Sender deve ristramettere pacchetti per compensare le perdite Costo della congestione: Maggiore carico per la trasmissione dei pacchetti Transport Layer 3-95 Cause della Congestione Quattro sender multihop Timeout + ritrasmissione Cosa succede quando aumenta il carico offerto dalle rete? Quando il carico offerto a B è elevato il troughput della connessione A-C risulta zero: il buffer in R2 è sempre pieno Transport Layer 3-96 Costo della Congestione Quando un pacchetto è perso lungo un percorso la capacità di trasmissione dei router lungo il percorso è sprecata!! Transport Layer 3-97 Causes/costs of congestion: scenario 3 H o s t A l o u t H o s t B Another “cost” of congestion: when packet dropped, any “upstream transmission capacity used for that packet was wasted! Transport Layer 3-98 Politiche di gestione delle code First-In-First-Out (FIFO) Non abbiamo alcuna politica di gestione che dipende dalle caratteristiche dei pacchetti Fair Queuing (FQ) Meccanismi di strutturazione del flusso dei pacchetti Un pacchetto non puo’ mai superare la capacità del router Code con priorità (WFQ) Flow 1 Flow 2 Round-robin service Flow 3 Flow 4 Transport Layer 3-99 Approaches towards congestion control Two broad approaches towards congestion control: End-end congestion control: no explicit feedback from network congestion inferred from end-system observed loss, delay approach taken by TCP Network-assisted congestion control: routers provide feedback to end systems single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) explicit rate sender should send at Transport Layer 3-100 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control Transport Layer 3-101 TCP: Controllo della Congestione Idea di base: si controlla la velocità di trasmissione controllando il numero dei segmenti trasmessi ma di cui non si è ancora ricevuto ACK: W Maggiore è il valore di W maggiore è il throughput della connessione. Quando si verifica una perdita di segmento allora si diminuisce il valore W Transport Layer 3-102 TCP Controllo della congestione Due fasi slow start (partenza lenta) congestion avoidance (annullamento della congestione) Valori da considerare: Congwin threshold: soglia che segnala il passaggio tra le due fasi Transport Layer 3-103 Controllo della congestione Limite superiore alle trasmissioni dei segmenti LastByteSent-LastByteAcked CongWin In formula rate = CongWin Bytes/sec RTT CongWin è il valore dinamico della funzione che misura la congestione della rete Transport Layer 3-104 TCP: Controllo della Congestione La banda di trasmissione è limitata dalla dimensione della finestra di congestione Congwin: Congwin w segmenti di dimensione MSS trasmessi in un RTT: throughput = w * MSS Bytes/sec RTT Transport Layer 3-105 Additive Increase/Multiplicative Decrease (AIMD) Modificare dinamicamente il carico offerto Variabile di stato (della connessione): CongestionWindow increase CongestionWindow when congestion goes down decrease CongestionWindow when congestion goes up Informazioni di stato che cambiano in modo dinamico Transport Layer 3-106 AIMD Come si manifesta la congestione? Timeout timeout è il segnale di perdita di qualche pacchetto. Perso pacchetto decremento moltiplicativo della finestra Ok incremento additivo della finestra Transport Layer 3-107 TCP AIMD multiplicative decrease: cut CongWin in half after loss event congestion window additive increase: increase CongWin by 1 MSS every RTT in the absence of loss events: probing 24 Kbytes 16 Kbytes 8 Kbytes time Long-lived TCP connection Transport Layer 3-108 TCP Slow Start When connection begins, CongWin = 1 MSS Example: MSS = 500 bytes & RTT = 200 msec initial rate = 20 kbps When connection begins, increase rate exponentially fast until first loss event available bandwidth may be >> MSS/RTT desirable to quickly ramp up to respectable rate Transport Layer 3-109 TCP Slowstart Host A initialize: Congwin = 1 for (each segment ACKed) Congwin++ until (loss event OR CongWin > threshold) RTT Slowstart algorithm Host B Incremento esponenziale (in termini del RTT) della finestra Perdita di pacchetti: timeout (Tahoe TCP), ACK triplicati (Reno TCP) time Transport Layer 3-110 Un raffinamento del servizio Idea: Dopo la ricezione di tre ACK duplicati: CongWin viene dimezzata La finestra viene fatta crescere in modo lineare Ma dopo un timeout: CongWin diventa 1; La finestra cresce esponenzialmente fino al raggiungimento della soglia. • 3 ACK dup. sono una indicazione che la rete è in grado di trasmettere segmenti • timeout dopo tre ack duplicati è un evento preoccupante sullo stato della congestione della rete Transport Layer 3-111 TCP Congestion Avoidance Congestion avoidance /* slowstart is over */ /* Congwin > threshold */ Until (loss event) { every w segments ACKed: Congwin++ } threshold = Congwin/2 Congwin = 1 1 perform slowstart Transport Layer 3-112 Refinement (more) 14 congestion window size (segments) Q: When should the exponential increase switch to linear? A: When CongWin gets to 1/2 of its value before timeout. Implementation: Variable Threshold At loss event, Threshold is 12 threshold 10 8 6 4 2 0 1 TCP Tahoe TCP Reno 2 3 6 7 4 5 8 9 10 11 12 13 14 15 Transmission round Series1 Series2 set to 1/2 of CongWin just before loss event Transport Layer 3-113 Conclusione CongWin ha un volore minore di Threshold, allora in sender è nella fase di slow-start e la finestra cresce in modo esponenziale. CongWin ha un volore maggiore di Threshold, il sendere è nella fase di congestion-avoidance e la finestra cresce in modo lineare. Al manifestarsi di ACK triplicato il valore di, Threshold diviene CongWin/2 e CongWin diviene Threshold. Al manifestarsi di un timeout, Threshold diviene CongWin/2 e CongWin diviene 1 MSS. Transport Layer 3-114 TCP Fairness Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K TCP connection 1 TCP connection 2 bottleneck router capacity R Transport Layer 3-115 Why is TCP fair? Two competing sessions: Additive increase gives slope of 1, as throughout increases multiplicative decrease decreases throughput proportionally R equal bandwidth share loss: decrease window by factor of 2 congestion avoidance: additive increase loss: decrease window by factor of 2 congestion avoidance: additive increase Connection 1 throughput R Transport Layer 3-116 Fairness (more) Fairness and UDP Multimedia apps often do not use TCP do not want rate throttled by congestion control Instead use UDP: pump audio/video at constant rate, tolerate packet loss Research area: TCP friendly Fairness and parallel TCP connections nothing prevents app from opening parallel cnctions between 2 hosts. Web browsers do this Example: link of rate R supporting 9 cnctions; new app asks for 1 TCP, gets rate R/10 new app asks for 11 TCPs, gets R/2 ! Transport Layer 3-117 Delay modeling Q: How long does it take to receive an object from a Web server after sending a request? Ignoring congestion, delay is influenced by: TCP connection establishment data transmission delay slow start Notation, assumptions: Assume one link between client and server of rate R S: MSS (bits) O: object size (bits) no retransmissions (no loss, no corruption) Window size: First assume: fixed congestion window, W segments Then dynamic window, modeling slow start Transport Layer 3-118 Fixed congestion window (1) First case: WS/R > RTT + S/R: ACK for first segment in window returns before window’s worth of data sent delay = 2RTT + O/R Transport Layer 3-119 Fixed congestion window (2) Second case: WS/R < RTT + S/R: wait for ACK after sending window’s worth of data sent delay = 2RTT + O/R + (K-1)[S/R + RTT - WS/R] Transport Layer 3-120 TCP Delay Modeling: Slow Start (1) Now suppose window grows according to slow start Will show that the delay for one object is: Latency 2 RTT O S S P RTT ( 2 P 1) R R R where P is the number of times TCP idles at server: P min {Q, K 1} - where Q is the number of times the server idles if the object were of infinite size. - and K is the number of windows that cover the object. Transport Layer 3-121 TCP Delay Modeling: Slow Start (2) Delay components: • 2 RTT for connection estab and request • O/R to transmit object • time server idles due to slow start initiate TCP connection request object first window = S/R RTT Server idles: P = min{K-1,Q} times Example: • O/S = 15 segments • K = 4 windows •Q=2 • P = min{K-1,Q} = 2 Server idles P=2 times second window = 2S/R third window = 4S/R fourth window = 8S/R complete transmission object delivered time at client time at server Transport Layer 3-122 TCP Delay Modeling (3) S RTT time from when server starts to send segment R until server receives acknowledg ement initiate TCP connection 2k 1 S time to transmit the kth window R request object S k 1 S RTT 2 idle time after the kth window R R first window = S/R RTT second window = 2S/R third window = 4S/R P O delay 2 RTT idleTime p R p 1 P O S S 2 RTT [ RTT 2 k 1 ] R R k 1 R O S S 2 RTT P[ RTT ] (2 P 1) R R R fourth window = 8S/R complete transmission object delivered time at client time at server Transport Layer 3-123 TCP Delay Modeling (4) Recall K = number of windows that cover object How do we calculate K ? K min {k : 2 0 S 21 S 2 k 1 S O} min {k : 2 0 21 2 k 1 O / S } O min {k : 2 1 } S O min {k : k log 2 ( 1)} S O log 2 ( 1) S k Calculation of Q, number of idles for infinite-size object, is similar (see HW). Transport Layer 3-124 HTTP Modeling Assume Web page consists of: 1 base HTML page (of size O bits) M images (each of size O bits) Non-persistent HTTP: M+1 TCP connections in series Response time = (M+1)O/R + (M+1)2RTT + sum of idle times Persistent HTTP: 2 RTT to request and receive base HTML file 1 RTT to request and receive M images Response time = (M+1)O/R + 3RTT + sum of idle times Non-persistent HTTP with X parallel connections Suppose M/X integer. 1 TCP connection for base file M/X sets of parallel connections for images. Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times Transport Layer 3-125 HTTP Response time (in seconds) RTT = 100 msec, O = 5 Kbytes, M=10 and X=5 20 18 16 14 12 10 8 6 4 2 0 non-persistent persistent parallel nonpersistent 28 100 1 10 Kbps Kbps Mbps Mbps For low bandwidth, connection & response time dominated by transmission time. Persistent connections only give minor improvement over parallel connections. Transport Layer 3-126 HTTP Response time (in seconds) RTT =1 sec, O = 5 Kbytes, M=10 and X=5 70 60 50 non-persistent 40 persistent 30 20 parallel nonpersistent 10 0 28 100 1 10 Kbps Kbps Mbps Mbps For larger RTT, response time dominated by TCP establishment & slow start delays. Persistent connections now give important improvement: particularly in high delaybandwidth networks. Transport Layer 3-127 Chapter 3: Summary principles behind transport layer services: multiplexing, demultiplexing reliable data transfer flow control congestion control instantiation and implementation in the Internet UDP TCP Next: leaving the network “edge” (application, transport layers) into the network “core” Transport Layer 3-128