Choice by Heuristics Eduard Brandstätter Johannes Kepler University of Linz Austria Conference of the Economic Science Association, Rome, June 30, 2007 Overview • Expectancy-value theories • Problems • Priority Heuristic • Conclusion Expectancy-Value Theories Utility = ∑ Probability x Value • • • • • • • • • Expected-value theory Expected-utility theory Prospect theory Cumulative prospect theory Security-potential/aspiration theory Transfer of attention exchange model Disappointment theory Regret theory Decision affect theory Heuristics! Three Steps 1) Check for dominance 2) Check for easy choice 3) Employ the priority heuristic Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The priority heuristic: Making choices without trade-offs. Psychological Review, 113, 409-432. Problem A 80% chance 20% chance to win $5,000 to win $0 B 2% chance 98% chance to win $4,010 to win $4,000 What would you choose? A or B? OA OB Priority Heuristic A 80% chance 20% chance to win $5,000 to win $0 B 2% chance 98% chance to win $4,010 to win $4,000 Three Reasons • Minimum gains • Chances of the minimum gains • Maximum gains Priority Heuristic A 80% chance 20% chance to win $5,000 to win $0 STOP B 2% chance 98% chance to win $4,010 to win $4,000 Priority Rule 1) Do the minimum gains differ? Problem C 40% chance 60% chance to win $5,000 to win $0 D 80% chance 20% chance to win $2,500 to win $0 What would you choose? C or D? OC OD Priority Heuristic C D 40% chance 60% chance 80% chance 20% chance to win $5,000 to win $0 to win $2,500 to win $0 Priority Rule 1) Do the minimum gains differ? 2) Do the chances of the minimum gains differ? STOP Problem E 0.001% chance 99.999% chance to win $5,000 to win $0 F 0.002% chance 99.998% chance to win $2,500 to win $0 What would you choose? E or F? OE OF Priority Heuristic E 0.001% chance 99.999% chance to win $5,000 to win $0 Choose E! F 0.002% chance 99.998% chance to win $2,500 to win $0 Priority Rule 1) Do the minimum gains differ? 2) Do the chances of the minimum gains differ? 3) Choose the gamble with the higher maximum gain! Questions When do the minimum gains differ? When do the chances differ? Aspiration Levels Minimum Gains 10% of the highest gain of the decision problem Chances 10% E 0.001% chance 99.999% chance to win $5,000 to win $0 F 0.002% chance 99.998% chance to win $2,500 to win $0 Aspiration Levels: $500, 10% Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Equi- Equalprobable weight Minimax Maximax Better Tallying Most Lexico- Least Probable than likely graphic likely average Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 TAX Equi- Equalprobable weight Minimax Maximax Better Tallying Most Lexico- Least Probable than likely graphic likely average Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 SPA TAX Equi- Equalprobable weight Minimax Maximax Better Tallying Most Lexico- Least Probable than likely graphic likely average Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 CPT SPA Erev et al. (2002) TAX Equi- Equalprobable weight Minimax Maximax Better Tallying Most Lexico- Least Probable than likely graphic likely average Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 CPT CPT SPA T&K Erev et al. (1992) (2002) TAX Equi- Equalprobable weight Minimax Maximax Better Tallying Most Lexico- Least Probable than likely graphic likely average Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 CPT L&O (1999) CPT CPT SPA T&K Erev et al. (1992) (2002) TAX Equi- Equalprobable weight Minimax Maximax Better Tallying Most Lexico- Least Probable than likely graphic likely average Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Priority CPT L&O (1999) CPT CPT SPA T&K Erev et al. (1992) (2002) TAX Equi- Equalprobable weight Minimax Maximax Better Tallying Most than likely average Lexico- Least Probable graphic likely Results 100 90 Correct Predictions (%) 80 70 60 LL BTA 50 PROB EQUI LEX MINI ML GUESS MAXI 40 EQW 30 20 10 0 0 10 20 30 40 50 60 70 Information Ignored (%) 80 90 100 Results 100 Correct Predictions (%) 90 80 SPA CPT 70 TAX TALL 60 LL BTA 50 PROB EQUI LEX MINI ML GUESS MAXI 40 EQW 30 20 10 0 0 10 20 30 40 50 60 70 Information Ignored (%) 80 90 100 Results 100 Correct Predictions (%) 90 PRIORITY 80 SPA CPT 70 TAX TALL 60 LL BTA 50 PROB EQUI LEX MINI ML GUESS MAXI 40 EQW 30 20 10 0 0 10 20 30 40 50 60 70 Information Ignored (%) 80 90 100 Conclusion • Expectancy-value theories rest on untested assumptions • Priority Heuristic Minimum gain, chances of minimum gain, maximum gain • New way to think about risky choice in the future Eduard Brandstätter Johannes Kepler University of Linz, Austria Choice by Heuristics Eduard Brandstätter Johannes Kepler University of Linz Austria Conference of the Economic Science Association, Rome, June 30, 2007 Computer Experiment Choices between 2 gambles Dependent variable Decision time Decision time (sec) 3 Reasons Independent variables • Number of consequences (2 or 5) 1 Reason 2 Consequences • 5 Number of reasons (1 or 3) Range of Application 100 Correct Predictions (%) 90 80 70 60 PRIORITY TAX SPA 50 CPT EV 40 2 Ratio of Expected Values 2 Results Mellers et al. (1992) 100 90 80 Correct Predictions (%) 70 60 50 40 30 PRIORITY 20 TAX SPA 10 CPT EV 0 1 2 3 4 Ratio Between Expected Values 5 6 Results Correct Predictions (%) Gambles with five consequences (Lopes & Oden, 1999) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Priority CPT T&K (1992) CPT Erev et al. (2002) TAX Equiprobable Equalweight Minimax Maximax Better than average Most likely Lexicographic Least likely Probable Results Correct Predictions (%) Choices between a gamble and a sure amount (Tversky & Kahneman, 1992) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Priority CPT CPT L&O Erev et al. (1999) (2002) SPA Equiprobable Equalweight Minimax Maximax Better than average Tallying Most likely Lexicographic Least likely Probable Results Randomly generated gambles (Erev et al., 2002) 100 90 80 Correct Predictions (%) 70 60 50 40 30 20 10 0 Priority CPT L&O (1999) CPT T&K (1992) SPA TAX Equi- Equalprobable weight Minimax Maximax Better Tallying than average Most likely Lexicographic Least Probable likely Results Priority Heuristic Correct Predictions Kahneman & Tversky (1979) 100% Lopes & Oden (1999) 87% Tversky & Kahneman (1992) 89% Erev et al. (2002) 85% Priority Heuristic For Losses? Gains 1) Do the minimum gains differ? 2) Do the probabilities of the minimum gains differ? 3) Choose the gamble with the higher maximum gain! Losses 1) Do the minimum losses differ? 2) Do the probabilities of the minimum losses differ? 3) Choose the gamble with the lower maximum loss! AL: 10% of highest gain/loss, 10% Transitivity? Transitivity: If A > B and B > C then A > C Transitivity? A 29% chance 71% chance to win $5.00 to win $0 B 38% chance 62% chance to win $4.50 to win $0 A>B Choose A! Transitivity? A 29% chance 71% chance to win $5.00 to win $0 B 38% chance 62% chance to win $4.50 to win $0 C 46% chance 54% chance to win $4.00 to win $0 A > B, B > C Choose B! Transitivity? A 29% chance 71% chance to win $5.00 to win $0 B 38% chance 62% chance to win $4.50 to win $0 C 46% chance 54% chance to win $4.00 to win $0 A > B, B > C, but C > A STOP Transitivity? Empirical Pattern A-B: 68% A B-C: 65% B A-C 37% A Prioirty heuristic predicts intransitivies Going to Court? A plaintiff can either accept a €200,000 settlement or face a trial with a 50% chance of winning €420,000, otherwise nothing. A defendant can either pay for a €200,000 settlement or face a trial with a 50% chance of losing €420,000, otherwise nothing. Example A defendant can either pay for a $200,000 settlement or face a trial with a 50% chance of losing $420,000, or a 50% chance of losing nothing. STOP Losses 1) Do the minimum losses differ? AL: $42,000 Decision Making In real life, many risky choice situations. Whether to • approach an attractive boy/girl or not • operate one’s knee or not • take job offer A or B • invade a country or not • put sanctions on a country or not • go to court or not Outcome-Heuristics • Maximax Select the gamble with the highest maximum outcome. • Better-than-average Calculate the grand mean of all outcomes of all gambles. For each gamble calculate the number of outcomes equal or above the grand mean. Choose the gamble with the highest number of such outcomes. A 80% chance 20% chance 4 000 0 B For sure 3 000 Dual-Heuristics • Least-Likely Identify each gamble‘s worst payoff. Select the gamble with the lowest probability of the worst payoff. • Probable Categorize probabilities as probable (i.e. p ≥ .5 for two-outcome gambles) and improbable. Cancel improbable outcomes. Calculate the mean of all probable outcomes for each gamble. Select the gamble with the highest mean. A 80% chance 20% chance 4 000 0 B For sure 3 000 Dual-Heuristics • Most-likely Determine the most likely outcome of each gamble and their respective payoffs. Then select the gamble with the highest, most likely payoff. • Lexikographic Like most-likely. If two outcomes are equal, determine the second most likely outcome of each gamble and select the gamble with the (second most likely) payoff. Proceed, until a decision is reached. A 80% chance 20% chance 4 000 0 B For sure 3 000 Computerexperiment: Decision Time A 20% chance 5,000 80% chance 2,000 C 25% chance 4,000 75% chance 3,000 B 50% chance 4,000 50% chance 1,200 D 20% chance 5,000 80% chance 2,800 AL € = 500 p = 10% AL € = 500 p = 10% Prediction People need less time for choice between A and B than between C and D Zentrale Fragen: Wie gut schneidet die Prioritäts-Heuristik im Vergleich zu … 1) einfachen Entscheidungs-Heuristiken, und 2) komplexen Entscheidungstheorien a) Kumulative Prospekt-Theorie (CPT) b) Security-Potential/Aspiration Theorie (SPA) ab c) Transfer of attention exchange model? Datensatz Klassische Entscheidungsprobleme (14) (Kahneman & Tversky, 1979) Vier heterogene Datensätze 1) Klassische Entscheidungsprobleme (14) (Kahneman & Tversky, 1979) Vier heterogene Datensätze 1) Klassische Entscheidungsprobleme (14) (Kahneman & Tversky, 1979) 2) Spiele, mit fünf Ausgängen (90) (Lopes & Oden, 1999) A 200 150 100 50 0 mit p = 0.04 mit p = 0.21 mit p = 0.50 mit p = 0.21 mit p = 0.04 B 200 165 130 95 60 mit p = 0.04 mit p = 0.11 mit p = 0.19 mit p = 0.28 mit p = 0.38 Vier heterogene Datensätze 1) Klassische Entscheidungsprobleme (14) (Kahneman & Tversky, 1979) 2) Spiele, mit fünf Ausgängen (90) (Lopes & Oden, 1999) 3) Entscheidungsprobleme zwischen Spiel und sicherem Betrag (56) (Tversky & Kahneman, 1992) A 50 100 mit p = 0.1 mit p = 0.9 B 95 sicher Vier heterogene Datensätze 1) Klassische Entscheidungsprobleme (14) (Kahneman & Tversky, 1979) 2) Spiele, mit fünf Ausgängen (90) (Lopes & Oden, 1999) 3) Entscheidungsprobleme zwischen Spiel und sicherem Betrag (56) (Tversky & Kahneman, 1992) 4) Spiele mit ungleichem Erwartungswert (100) (Erev et al., 2002) A 77 mit p = 0.49 0 mit p = 0.51 EV = 37.7 B 98 mit p = 0.17 0 mit p = 0.83 EV = 16.7 Prospekt-Theorie Kahneman & Tversky (1979) U = (pi) v(xi) 1 (p) v(x) (-x) 0 Probability (p) 1 Wahrscheinlichkeits-GewichtungsFunktion Problem x Multiplikation Werte-Funktion Expectancy Value Theories Dependent Variable = Probability x Value Choice Difficulty EV A 99% chance 1% chance to win €5,000 to win €0 €4,950 B 100 % chance to win €3 €3 C 80% chance 20% chance to win €5,000 to win €0 €4,000 D 2% chance 98% chance to win €4,010 to win €4,000 €4,000 Results 100 Correct Predictions (%) 90 PRIORITY 80 SPA CPT 70 TAX TALL 60 LL BTA 50 PROB EQUI LEX MINI ML GUESS MAXI 40 EQW 30 20 10 0 0 10 20 30 40 50 60 70 Information Ignored (%) 80 90 100 Results 100 90 Correct Predictions (%) 80 70 60 GUESS 50 40 30 20 10 0 0 10 20 30 40 50 60 70 Information Ignored (%) 80 90 100 Results Correct Predictions (%) (Kahneman & Tversky, 1979) 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Results 100 90 Correct Predictions (%) 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 Information Ignored (%) 80 90 100 Utility = ∑ Probability x Value Three Steps: Easy Choice A 29% chance 71% chance to win $3.00 to win $0 B 17% chance 83% chance to win $56.70 to win $0 What would you choose? A or B? OA OB Correct Predictions (%) Results 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Equiprobable Equalweight Minimax Maximax Better than average Tallying Most likely Lexicographic Least likely Probable Correct Predictions (% ) Results 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 CPT SPA Equiprobable Equalweight Minimax Maximax Better than average Tallying Most likely Lexicographic Least likely Probable Correct Predictions (%) Results 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Priority CPT SPA Equiprobable Equalweight Minimax Maximax Better than average Tallying Most likely Lexicographic Least likely Probable