Measurements and Simulations of Charge Collection Efficiency of p+/n Junction SiC Detectors Francesco Moscatelli1,2, Andrea Scorzoni2,1, Antonella Poggi1, Mara Bruzzi3, Stefano Lagomarsino3 , Silvio Sciortino3 , Mihai Lazar4 and Roberta Nipoti1 1CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna, Italy and INFN, Università di Perugia, via G. Duranti 93, 06125 Perugia, Italy 3Dipartimento di Fisica, Polo Scientifico di Sesto Fiorentino,Via Sansone 1 Firenze Italy 4CEGELY (UMR CNRS n°5005), INSA de Lyon, 20, Av. A. Einstein, 69621 Villeurbanne, France 2DIEI This work was partially supported by the CERN RD50 Collaboration.and by the INFN SiCPOS project Università degli Studi di Perugia IMM Bologna 1 Outline • Introduction • Technological processes and I/V - C/V measurements on p+/n diodes • CCE setup and measurements • Modeling of SiC detectors – Motivations and simulation tool – Results • Conclusions Università degli Studi di Perugia IMM Bologna 2 Introduction • Large Hadron Collider (LHC) experiment (upgrade) • Fast hadron fluences above 1016 cm-2 (after 10 years) • Current silicon technology is unable to cope with such an environment – Unreachable full depletion voltage – Very high leakage current – Poor charge collection efficiency Università degli Studi di Perugia IMM Bologna 3 Silicon Carbide - large Eg (3-3.3 eV) very low leakage current - MIP (Minimum Ionizing Particle) generates 55 e/h pairs per m - radiation hardness (?) (high atomic binding within the material) - high quality crystals now available - Schottky barrier detectors have been studied as -particle detectors (100% of charge collection efficiency (CCE))* - complex radiation detectors an integrated electronic readout on board of the detector chip. p/n junctions are needed * F. Nava, et al. , IEEE Transactions on Nuclear Science, Vol. 51, No. 1 (February, 2004). Università degli Studi di Perugia IMM Bologna 4 SiC Process: p+/n n- Epi (40 m) doping: 1 1015 cm-3 Al (350 nm) / Ti (80 nm) deposition Ion implantation Al+ @ 300°C Annealing 1650°C 30 min p+ doping (0.4 m) = 41019 cm-3 p- doping (0.6 m) = 51017 cm-3 Annealing 1000°C in vacuum 2 min n+ Università degli Studi di Perugia IMM Bologna 5 I-V measurements on p+/n diodes In collaboration with INSACEGELY, Lyon France 3 0 1x10 1x10 n=1.5-1.6 -3 1x10 -5 1x10 n=2 -4 1x10 VBD -6 1x10 -9 0 -7 1 2 3 4 V (V) • • • -3 1x10 -5 -7 1x10 -2 1x10 1x10 1x10 Ni Reverse I-V -1 1x10 -1 2 n n+ Forward I-V 2 p+ 1 J (A/cm ) 1x10 J (A/cm ) p- Ti-Al 1x10 5 1x10 -4000 -3000 -2000 V (V) -1000 0 75% of diodes have good I-V curves VBD is about 4 kV Theoretical limit for this device: 5 kV Università degli Studi di Perugia IMM Bologna 6 CV measurements 1E16 Ti-Al Ni -3 n n+ Ndop [cm ] p+ 1E15 5 10 15 20 25 30 Depth [m] • Epi doping (1.11015 cm-3) confirmed Università degli Studi di Perugia IMM Bologna 7 CCE measurements setup 90Sr 0.1mCi Amptek Acquisition system S+PM trigger Università degli Studi di Perugia IMM Bologna 8 CCE measurements 32 Collection lenght depleted region p+/n 1600 28 L [m] Number of collected charges • Measurements on p+/n diodes: epi 1.1.1015 cm-3 40 µm, • Max. applied voltage: 900V (30 µm depleted). Vdep (from theory) =1600V 1200 24 L 20 collected charge 55 pairs/ m 16 800 12 200 400 600 800 Reverse voltage [V] 200 400 600 800 Reverse voltage [V] • 100% collection efficiency in the 30 µm deep depleted region using measured lengths of depleted region Università degli Studi di Perugia IMM Bologna 9 Motivations for simulation • Very high cost of SiC wafers • Trade off between SiC wafer quality and available budget • Suitability of device simulation for design optimization • Introducing traps, we will be able to analyze which defects are important to decrease the CCE Simulation Tool • DESSIS ISE-TCAD – Discrete time and spatial solution to the fundamental semiconductor equations – 6H-SiC model available Università degli Studi di Perugia IMM Bologna 10 Grid and Heavy Ion crossing Depleted region Hole density Before crossing After crossing Heavy Ion crossing modeling available within DESSIS ISE-TCAD Università degli Studi di Perugia IMM Bologna 11 p+/n diode output signal CC 0 I dt t • Particle crossing at 2.5 ns Current [A] • Collected Charge 3x10 -6 2x10 -6 1x10 -6 0 2x10 -9 3x10 -9 4x10 -9 Time [s] epi doping (40 m) = 1015 cm-3 p+ doping (0.45 m) = 41019 cm-3 Università degli Studi di Perugia IMM Bologna 12 Simulations of CC of Schottky diodes 50 m Collection length (90Sr source, β particles ) Schottky contact:qB=1.6 eV 40 38 µm 35 L (m) epi n substrate n+ 30 25 simulations measurements 20 15 0 20 40 60 80 100 Voltage [V] * Measurements from: F. Nava, et al. , IEEE Transactions on Ohmic contact Nuclear Science, Vol. 51, No. 1 (February, 2004). Università degli Studi di Perugia IMM Bologna 13 Simulations of CC of p+/n diodes p+ measurements simulations 40 µm 28 L [m] ND = 1.11015 cm-3 32 ND = 71018 cm-3 60 µm 24 20 16 12 200 400 600 800 Reverse voltage [V] 50 µm Università degli Studi di Perugia CCE experimental results are well reproduced IMM Bologna 14 Conclusions • p+/n junctions have been realized and electrically characterized. Good forward and reverse characteristics have been obtained • First CCE experimental results on SiC pn junctions: 100% collection efficiency in 30 m using measured lengths of depleted region • Development of a simulation model for SiC to obtain good agreement with CC measurements on Schottky and p+/n SiC diodes Università degli Studi di Perugia IMM Bologna 15 Future developments • Radiation hardness will be verified. • New SiC detectors will be realized taking into account the simulation results. • Using DLTS measurements and simulations, we will be able to analyze which defects are important to decrease the CCE Università degli Studi di Perugia IMM Bologna 16