Fare clic per modificare Memoslo stile del titolo Filename may not ends with a numeric, as it may cause some problem with some mail readers which put numbers automatically to attached files. So the file is named as R2nd R3rd, R4th etc. Omit to use bright red on white background, as it is too strong. In addition, there are many people who can not see pure-red (red-blindness is the most popular color-blindness) PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 1 Università degli Studi di Udine Nagoya University Wireless and Power Line Communications Lab EcoTopia Science Institute Tutorial at IEEEE SmartGridComm 2011 October 17, 2011 Power Line Communications for the Smart Grid Andrea M. Tonello and Masaaki Katayama Wireless and Power Line Communications Lab University of Udine, Italy EcoTopia Science Institute Nagoya University, Japan [email protected] www.diegm.uniud.it/tonello [email protected] www.katayama.nuee.nagoya-u.ac.jp 2 Self-introductions of the Speakers PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 3 Fare clic perMasaaki modificare lo stile del titolo Katayama Short Bio – Born in Kyoto Japan, in 1959. – B.S., M.S., and Ph.D. from Osaka Univ. Japan in 1981, 1983, 1986. – Assistant Professor at Toyohashi University of Technology from 1986 to 1989 – Lecturer at Osaka University from 1989 to 1992 – Associate Professor at Nagoya University from 1992 – Professor at Nagoya University from 2001 Member Ship – Fellow of IEICE and Senior Member of IEEE PLC Activity – Presentations in ISPLC since 1998 (the 2nd ISPLC) – Organizer of ISPLC2003 – Steering Committee Member for multiple ISPLCs – GC’09 Selected Areas in Communications co-chair – TPC Chair of ISPLC2012, Beijing China PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 4 Fare clic per Nagoya modificare lo stile del titolo Univ. Established in 1939 as the last (the 9th, after Seoul, Taipei, and Osaka) Imperial University of Japan Scale (as of May 1, 2009) Staffs : 3, 204 Undergraduate Students: 9, 640 Graduate Students: 6, 049 Revenues : 94, 370, 000, 000 yen Expenditure : 92, 912, 000, 000 yen Ground Area: 3, 247, 424 m2 Building Area 750, 344 m2 Nobel Prize Laureates: 4 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 5 Fare clic perKatayama modificare Lab. lo stile del titolo ◆Staffs Masaaki Katayama, Prof. Takaya Yamazato, Prof. Kentaro Kobayashi, Assist. Prof. Yoshihiko Kito, Technician Aiko Ishikawa, Secretary Eriko Shiraishi Secretary ◆Students Ph.D. Candidates: 2 M.S. Course : 13 Undergraduates : 8 EcoTopia Science Institute Research Institute Established in 2004. Aim: Scientific studies for the realization of an environmentally harmonized sustainable society Faculties: about 60. Katayama Lab. belongs to EcoTopia Science Institute EECS( Dept. of Electrical and Electronic Engineering and Computer Sciences) Katayama Lab. also belongs to EECS. Students of the lab. belong to EECS. we are here The Only One Lab. for Wireless Communications in Nagoya Univ. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 6 Fare clicResearch per modificare stile Lab. del titolo Projects lo of Katayama Electric Energy EcoTopia Project Large-Scale Real-Time Data Gathering and Control, Collaborations with other fields Intelligent Transportation Systems [ITS] Modulation/Coding, Access Methods, Position Estimation Wireless Wire (Reliable Robust Radio) Wireless Control of Industrial Machines, Drive by Wireless, Radio Control of Robots Visible Light Communications [LED-Traffic Light Communication, Information Light House for Visually Handicapped] Modulation/Coding, Non-Gaussian Non-Stationary Noise Sensor Networks Cooperative Communications, Low-Power Consumptions, Energy Harvesting, Wireless Energy Transmission Power Line Communications – Adaptive Modulation/Coding/Demodulation, Smart Grid as an application of PLC Reconfigurable Radio Systems – Cognitive Radio (Dynamic Spectrum Assignment, Piggy Back Modulation), System Architecture New Generation Satellite Communications – High Speed Satellite Communications, Multi-Satellite Routing, Reconfigurable Satellite, Satellite/Terrestrial Combined Network Next Generation Mobile Communications – Advanced Modulation/Coding, Super-Speed Access, Heterogeneous Networks PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 7 Fare clic per modificare lo stile del titolo Andrea Tonello PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 8 Fare clic per modificare Contents lo 1 stile del titolo Self-introductions of the Speakers Acitivities of TC-PLC of IEEE [A] Power line communications and Smart Grid communications [M] Application scenarios of PLC PLC Operating Frequecies Communications in Smart Grid and roles of PLC Channel characteristics and modeling [A] Main channel features in in-home and outdoor scenarios Results from measurements Top-down and bottom-up modeling Some results on MIMO channel modeling and open issues Noise characteristics and modeling [M] Main noise sources, In-home and outdoor noise sources Noise modeling PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 9 Fare clic per modificare Contents lo 2 stile del titolo Physical layer techniques [A] CDMA, Single carrier (FSK) modulation and UWB Filter bank modulation (OFDM, Pulse shaped OFDM, FMT, Wavelet OFDM) Resource allocation and scalability UWB and narrow band OFDM Optimum Design of PLC Modem [M] Medium Access Control and Cooperation Teqniques [A] MAC in broadband systems MAC in narrowband systems Relay techniques for range extension Cooperation with flooding for large scale networks Protocols for sensing and control in the SG [M] Standardization [A] Coexistence and interoperability PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 Activities of TC-PLC of IEEE PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 Fare clic per modificare lo stile del titolo To be done... PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 Power line communications and Smart Grid communications PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 13 Fare clic per PLCmodificare Operatinglo Bands stile del titolo PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 14 Fare PLC: clic per notmodificare a simple wireless lo stile system del titolo Super "Ultra Wide Band (UWB)" Signal – 2MHz~30MHz (λ=10m~150m) → bandwidth/center frequency ≒175%! – 10kHz~450kHz (λ=700m ~ 30km) → bandwidth/center frequency ≒200%! Propagation – Topology dependent propagation loss (not a simple distance based model) – Resonance and Absorbance (multi-path is not a single cause of frequency selectivity) – Time variant multi-path environment: often cyclostationary (in mobile radio scenario, this means construction/demolishment of buildings in 100-120 times a second) PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 15 Fare clic per Application modificare Scenarios lo stile del titolo Outdoor internet access from: http://www.powerlinenetworking.co.uk In-Home Smart-grid from advance 05 In-Vehicle Integrazione di ICE-PLiCOM nel Dispositivo di Ricarica from OMEGA 08 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 16 Fare Outdoor clic per – Broad modificare Band Internet lo stile del Access titolo It enables customer premises to access the Internet through the existing electrical infrastructure from PLC book - Wiley Services – High Speed Internet connection, video on demand, voice over IP, … Technology – PHY layer: usually based on multicarrier modulation (OFDM) – MAC: CSMA and/or TDMA depending on the vendor Deployments – Italy, Austria, Germany, Spain,USA, …. under development countries – Market suffers of highly penetrated xDSL services PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 17 Fare clic per In-home modificare Networking lo stile del titolo In-Home high speed services delivered through the home gateway – Home office networking, video conferences, … – IPTV, 3D games, video streaming Integration of different technologies: PLC, Wireless (WiFi), UWB, visible light communications, … – This objective can be realized with the use of the Inter-MAC layer developed in the FP7 Omega (home gigabit networks) project – PLC can provide a high speed backbone PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 18 Fare clic per modificare In-vehicle PLC lo stile del titolo In-vehicle communications via DC/AC power lines: – Alternative or redundant communication channel (e.g., to CAN bus) – Command and control of devices and sensors – Multimedia services distribution (music, video, games, etc.) Benefits – Weight reduction – Lower the costs PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 19 Fare clic per modificare Smart Grid lo stile del titolo distribution generation transmission A Smart Grid is composed by several domains – Generation, Transmission, Distribution, Customer Intelligent and dynamic grid with – Distributed generation and storage options – Active participation by customers The Smart Grid elements of each domain are interconnected through two-way communication customer From: http://smartgrid.ieee.org Convergence of TLC and Electrical Networks PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 20 Fare clicSmart per modificare Grid Technologies lo stile del titolo Supervisory control and data acquisition (SCADA) Smart meters – Control and manage the flow of electricity to/from the customers and provides information about energy usage and patterns – Record actual consumption, update prices, etc. The smart grid has to provide access points for battery charging – New opportunities will arise for delivering communication services via the exploitation of the e-spots Technologies – Convergence of PLC, wireless and wireline technologies PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 21 FareCommunications clic per modificare forloSmart stile del Grid titolo Basic Requirement – Information Gathering: Sensor Network – Equipment Control : Tele-Control Special Features – Scale • Lager than conventional senor/control netowrks – Security • Information is highly private • Robustness against natural desastesr is required • Robustness against intentional atacks is requires PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 22 Channel Characterization and Modeling PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 23 Fare clic per modificare Couplinglo stile del titolo Coupling is necessary to remove the 50/60 Hz power signal Capacitive coupling is often used especially in LV Size is an issue of used in MV lines Inductive coupling simplifies installation which is good in MV/HV lines. It has however, lower pass behavior Inductive coupling in MV lines, courtesy of RSE PLC for the Smart Grid – IEEE SmartGridComm 2011 Capacitive coupling in MV lines, courtesy of RSE A. Tonello, M. Katayama 24 Fare clic Channel per modificare Characteristics lo stile del titolo The channel exhibits – Multipath propagation due to discontinuites and unmatched loads – Frequency Selective Fading – Cyclic time variations due to periodic change of the loads with the mains frequency PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 25 Fare In-Home clic perChannel modificare Characterization lo stile del titolo Real – life residential sites – Italian in-home scenario 200 kHz – 100 MHz More than 660 links – Channel frequency response – Input impedance Static and time variant channel acquisitions PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 26 Fare clic per Path modificare Loss and lo Phase stile del titolo Path Loss Phase 20 50 0 0 Phase (rad) Path Loss (dB) -20 -40 -60 -50 -100 -80 -150 -100 -120 0 20 40 60 Frequency (MHz) 80 frequency-decreasing in average PLC for the Smart Grid – IEEE SmartGridComm 2011 100 -200 0 20 40 60 Frequency (MHz) 80 100 The phase is not uniformly distributed The average phase is not linear at low frequencies A. Tonello, M. Katayama 27 Fare clic Relations per modificare between lo Metrics stile del titolo We study the relation between the coherence bandwidth, the average channel gain, and the delay spread of the measured channels Measured outliers 3000 Samples Robust fit 2500 Coherence Bandwidth (kHz) RMS-Delay Spread (s) 1 0.8 0.6 0.4 0.2 0 -60 2000 Samples Best fit 1500 1000 500 -50 -40 -30 -20 -10 Average Channel Gain (dB) PLC for the Smart Grid – IEEE SmartGridComm 2011 0 10 0 0 0.5 1 1.5 2 2.5 3 RMS Delay Spread (s) 3.5 4 4.5 A. Tonello, M. Katayama 28 Top-down channel modeling PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 29 Fare Top-Down clic per modificare Statistical lo Modeling stile del titolo The channel transfer function can be determinitically modeled according to the Multipath Propagation Model (MPM) in the FD Np H f A pi f e a0 a1 f K di e j 2 fdi i 1 Propagation phase shift Cable attenuation Reflection effects IDEA: introduce the variability into the model N p : Poisson random variable with intensity L max pi f : log-normal frequency-dependent r.v. with a random sign flip di : Erlang random variable PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 30 Fare clic per modificare Path Gains lo stile del titolo In some channels, the attenuation does not strictly increase as a function of the frequency – It can be traced back to the coupling effects between wires without electrical continuity (e.g., cross-phase channels) [5] We include this effect in the path gains as follows 0 pi f gi ci f -10 K2 -20 gi : log-normal random variable with a random sign flip ci : log-normal random variable with a random sign flip K 2 : constant PLC for the Smart Grid – IEEE SmartGridComm 2011 Path Loss (dB) -30 -40 -50 -60 -70 -80 -90 -100 0 20 40 60 Frequency (MHz) 80 A. Tonello, M. Katayama 100 31 Fare clic Fitting per modificare the Top-Down lo stile Model del titolo The MPM can be fitted to the experimental measures – It requires the knowledge of the average path loss profile and the RMS delay spread of the measured channels Example: fit the model to the results of a measurement campaign reported in Omega and the literature [6] Percentage No. of (%) channels Use a finite set of class of parameters Class 1 3.49 5 Provide a certain probability to each class 0 Class 9 -10 Class 2 16.78 24 Class 3 18.18 27 Class 4 11.88 17 Class 5 11.88 17 Class 6 12.58 18 Class 7 9.79 14 Class 8 7.69 11 Class 9 7.69 11 Path Loss (dB) -20 -30 -40 144 measures -50 -60 -70 -80 0 Target Path Loss 20 Class 1 40 60 Frequency (MHz) 80 PLC for the Smart Grid – IEEE SmartGridComm 2011 100 A. Tonello, M. Katayama 32 Fare clic per Average modificare Channel lo stile Gaindel titolo We define the Average Channel Gain as N2 1 * G 10log10 H if H if N 2 N1 i N1 Figure to be added PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 33 Fare clic perRMS modificare Delay Spread lo stile del titolo We define the Root Mean Square Delay Spread as N 1 iTc i 0 2 2 N 1 2 P i iTc P i , P i h iTc i 0 N 1 h iTc 2 i 0 Figure to be added PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 34 Fare clic per Coherence modificare Bandwidth lo stile del titolo We define the Coherence Bandwidth as [5] Bc l f s.t. N2 R l f R 0 R k f f H if H * if k f i N1 Figure to be added Higher probability to find low coherence bandwidths for the generated channels PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 35 Bottom-up channel modeling PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 36 In-Home Fare clic :per Bottom-Up modificare Statistical lo stile del Modeling titolo Random topology generation – Regular structure: the area can be divided in clusters (typically one room/cluster) – Each cluster has a derivation box – National practices and norms can also be implemented (e.g., UK ring topology) Applying Trasmission Line theory we can compute the CTF among any pair of outlets for a topology realization – Efficient method based on voltage ratio approach has been developed : outlets : derivation boxes PLC for the Smart Grid – IEEE SmartGridComm 2011 Ref: Tonello, Versolatto, IEEE Tr. Power Del. 2010 A. Tonello, M. Katayama 37 Fare clic per TL Theory modificare Application lo stile del titolo PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 38 In-Home Fare clic : Some per modificare Channel Statistics lo stile del (B=30 titolo MHz) Cumulative Distribution Function of RMS Delay Spread Quantile-Quantile Plots of Average Channel Gain 0.8 CDF 0.6 0.4 Af = 100 m2 0.2 Af = 200 m2 dB Average Channel Gain quantiles 1 0 -20 -40 -60 -80 Af = 100 m2 Af = 200 m2 -100 Af = 300 m2 0 0.2 0.4 0.6 0.8 RMS Delay Spread (s) 1 1.2 Af = 300 m2 -3 -2 -1 0 1 Standard Normal Quantiles 2 3 B The delay spread and average channel gain G = 1/ B ò | H (f ) |2 df 0 are approximately log-normal, (mean: 0.1/0.3 µs, and -25/-50 dB). The bottom-up approach allows the connection to physical reality (topology, distance, time variant loads …). But more complex. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 39 Fare clic per Outdoor modificare LV Topology lo stile del titolo from PLC Wiley Low Voltage (230/400 V) 3-phase distribution system divided in supply cells Each supply cell is connected to a single MV/LV transformer station and it serves up to 300 households via branches (30 households/branch) A branch typically extends to a maximal length of 1 km In-depth Investigation provided by Open PLC European Research Alliance (OPERA) Ref: PLC Book – Wiley 2010 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 40 Fare Outdoor clic per LVmodificare vs. In-Home lo PLC stileChannel del titolo Comparison between an OPERA reference channel and a typical In-Home channel 0 In-Home channels have high frequency selectivity and low attenuation -20 -40 Path Loss (dB) -60 – Very high number of branches, discontinuities and unmatched loads – Short cables 150 m -80 -100 -120 In-Home Outdoor LV -140 250 m 350 m -160 -180 -200 0 10 30 20 frequency (MHz) 40 50 Outdoor LV channels have high attenuation but negligible fading – Cable attenuation dominates PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 41 Fare clic per Outdoor modificare MV Channel lo stile del titolo MV channels exhibit in general (but not always!) lower attenuation than Outdoor LV PLC – Further investigations have to be done The multipath model can be specialized for overhead cables (effect of high-loss earth) Coupling effects have also to be considered – Inductive / Capacitive coupling – RESULTS FROM MEASUREMENTS to BE ADDED PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 42 MIMO PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 43 An Fare Approach clic per modificare to MIMO Channel lo stile del Modeling titolo To be added PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 44 Noise Characterization and Modeling PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 45 Main noise sources, In-home and outdoor noise sources PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 46 FareNoise clic per Generated modificare by Typical lo stile del Loads titolo To be added recent results fn a measurement campaign in PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 47 Noise Characteristics PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 48 Fare clic PLC per Noise modificare Classification lo stile del titolo Stationary Noise – Colored Background Noise – Narrowband Noise Unstationary Noise – Periodic Impulsive Noise – Aperiodic Impulsive Noise Ref: Zimmermann, Dostert, ISPLC 2000 Esmalian, Kschischang, Gulak, IJCS 03 PLC Book – Wiley 2010 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 49 Narrow-band Fare clic Characteristics per modificare of lo PLC stile noise del titolo Peculiar characteristics of power-line noise – mainly caused by appliances • non-stationary • non-white – Statistic Feature of PLC noise – Simple, Tractable, and Accurate Mathematical Model PLC for the Smart Grid – IEEE SmartGridComm 2011 Narrow Band (10Hz - 450kHz) A. Tonello, M. Katayama 50 Fare Background clic per modificare Noise Comparison lo stile del titolo Noise PSD Comparison -60 Outdoor MV Outdoor LV In-Home -70 PSD (dBm/Hz) -80 -90 -100 -110 -120 -130 MV PLCs experience the highest level of noise (approximately 20/30 dB higher than In-Home) Overhead MV background noise due to corona discharges -140 – The strong electric fields -150 determine the avalanche 0 10 20 30 40 50 frequency (MHz) generation of free charges in the Background noise has an exponential PSD sorrounding air, which in turn induce current pulses in the Narrowband interference exhist conductors – FM disturbances (> 87.5 MHz) – – AM (< 1.6 MHz) Radio amateur (up to 30 MHz) PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 51 Wide-band Noise Fare clic per modificare lo stile del titolo in time-frequency plane ・Non-white: concentrated in lower frequency band. ・Cyclic change synchronous with a period TAC/2. TAC TAC PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 52 Modeling of NB PLC Noise PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 53 Fare clicMeasurement per modificare System lo stile del titolo Reference @300kHz <1.9MHz 10 M samples/s PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 54 Pick-up circuit Fare clic per modificare stili del testo dello schema – Secondo livello • Terzo livello – Quarto livello » Quinto livello PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 55 Fare clic per modificare Noise lo stile del titolo Normalized Noise-to-Signal Ratio ( iTS ) Instantaneous Noise Lev el at iTS Av arage Ref erence Signal Lev el ( TS sec.) 400 [samples] 40 [ s] Normalized Noise-to-Signal Ratio ( iTS ) ( iTS ) 2 ( iTS ) Instantaneous Noise Level Normalized by Reference Signal Level with unit power PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 56 FareTypical clic perNB-PLC modificare NoiseloWaveform stile del titolo (iTS ) TAC:a cycle duration of the AC voltage (1/60 [s]) Noise characteristics change synchronous with a period TAC/2. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 57 Fare clic per CDFmodificare of PLC Noise lo stile (1) del titolo If noise is measured at random timings, PLC Noise is Impulsive: – Higher Probability for Low-level noise and High-level noise – Lower Probability for Medium-level noise than Gaussian Noise Non-Gaussian: if samples taken randomly PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 58 Fare clic per CDFmodificare of PLC Noise lo stile (2) del titolo PLC Noise is Gaussian – if sampled synchronously with mains AC If Gaussian – only (time-dependent) variance (instantaneous power) 2 (iTS ) E[ 2 (iTS )] is necessary. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 59 Variance (Instantaneous Power) Fare clic per modificare lo stile del titolo as a cyclic function Noise Waveform (iTS ) PLC for the Smart Grid – IEEE SmartGridComm 2011 Cyclic Averaged Noise Power 1 2 m1 2 (iTS ) (iTS jT C) 2m j 0 2 m A. Tonello, M. Katayama 60 Noise Power FareInstantaneous clic per modificare lo stile del titolo Assumption: Cyclic-Stationary Process Instantaneous Normalized Noise Power – Requires ensemble average 2 (iTS ) E[ 2 (iTS )] If Noise is Cyclic-Stationary Process – Cyclic-Average of m/2 cycles of AC 2 m 1 1 2 m2 (iTS ) (iTS jT C) 2m j 0 2 (iTS ) lim m2 (iTS ) m PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 61 Approximation of Fare clic per modificare lo stile del titolo Instantaneous Power of PLC Noise Approximated Instantaneous 2 Power of PLC Noise ˆ (t ) Cyclic Averaged Instantaneous 2 Power of PLC Noise m (iTS ) L3 L 1 ˆ (t ) Al sin(t 2 l 0 TC l ) PLC for the Smart Grid – IEEE SmartGridComm 2011 nl l 0 Al 0.23 1 2 l nl 0 1.38 6 1.91 7.17 35 1.57 105 [deg] A. Tonello, M. Katayama 62 Convergence of the Derived Parameters Fare clic per modificare lo stile del titolo 0 10 20 30 40 about 40-50 cycles (1 second) is enough PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 63 Power Density of Fare clicSpectrum per modificare loNB-PLC stile delNoise titolo PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 64 Approximation of Power Spectrum Density Fare clic per modificare lo stile del titolo Noise Power for a given time-frequency 2 (t , f ) 2 (t ) ( f ) Linear Approximation of PSD in dB ln ( f ) af C for f PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 65 Fare Computer clic per modificare Simulated NB-PLC lo stile del Noise titolo L 3 a 1.2 10 5 l 0 1 2 PLC for the Smart Grid – IEEE SmartGridComm 2011 Al 0.23 1.38 7.17 l [deg] 6 35 nl 0 1.91 1.57 105 A. Tonello, M. Katayama 66 Fare clic per modificare lo stile del titolo Robustness of Parameters Measured Simulated Parameters ? Parameters PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 67 Fare clic per modificare Summarylo stile del titolo Narrow-band Approximations – Cyclostationary Gaussian – Linear Function for PSD in dB Simple Mathematical Representation of Narrow-Band PLC noise – 8-parameters – Necessary Observation: about 1second Benefits – Benchmark for Design/Evaluation of PLC Systems – Better Understandings of PLC Noise PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 68 Correlations of Noise Waveforms PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 69 Fare clic per modificare PLC Noiselo stile del titolo Noise Source – Wireless Systems: thermal noise at receiver amplifiers. – PLC Systems: machine-made noise by electric appliances. • Interference from electric appliances, rather than simple noise • Estimation, Adaptation, and Cancellation are possible. Features – Non-Gaussian (less entropy) – Non-White (Frequency Dependent) – Non-Stationary (Time Dependent) – Noise waveforms at different frequencies, at different time-slots, and at different locations may have correlations. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 70 Wide-band Noise Fare clic per modificare lo stile del titolo in time-frequency plane ・Non-white: concentrated in lower frequency band. ・Cyclic change synchronous with a period TAC/2. TAC TAC PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 71 Instantaneous Power of Band-Limited Noise Fare clicat per modificare lo stile del titolo different frequency sub-bands. Measured at 22:00 on Nov. 25 2002. (3.197MHz,54kHz) (3.305MHz,54kHz) •Cyclo-Stationary with a period TAC/2. •Instantaneous noise power in different frequency looks alike. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 72 Farenon-white/non-stationary clic per modificare lo stileNoise del titolo Estimation of noise statistics is possible by cyclic features by the observation at vacant frequency/time slots. TAC PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 73 of noiselowaveforms FareRelationship clic per modificare stile del titolo Noise waveforms at different outlets mainly caused by the same electrical appliances Noise waveforms may have correlations PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 74 Measures of the correlation characteristics Fare clic per modificare lo stile del titolo Tree types of correlation coefficients 1.instantaneous noise voltages 2.instantaneous noise powers 3.cyclic-averaged noise powers Correlation coefficients ( X X ) (Y Y ) ( X X ) (Y Y ) 2 PLC for the Smart Grid – IEEE SmartGridComm 2011 2 A. Tonello, M. Katayama 75 Noise voltage Noise voltage 1. Correlations coefficients Fare clic of per modificare lo stile del titolo instantaneous voltages t t Noise sampled @outlet B:n [i ] 2 Noise sampled @outlet A: n1[i ] T / 1 (n [i ] n [i ]) (n [i ] n [i ]) i 0 T / 1 1 1 (n1[i ] n1[i ]) 2 i 0 2 2 T / 1 (n [i ] n [i ]) i 0 1 2 1 Sampling interval of ADC: Measured samples : T / PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 76 tt At outlet A: n1[i ] At outlet B: square t T / 1 power t (n [i ] 1 i 0 T / 1 (n [i ] i 0 1 PLC for the Smart Grid – IEEE SmartGridComm 2011 2 2 n2 [i ] square Instantaneous noise power Instantaneous noise power Noise voltage Noise voltage 2. Correlations coefficients Fare clic per modificare lo stile del titolo of instantaneous noise powers t n1[i ]2 ) (n2 n2 [i ]2 ) n1[i ]2 ) 2 2 T / 1 (n [i ] i 0 2 2 n2 [i ]2 ) 2 ) 2 A. Tonello, M. Katayama 77 3. Correlations coefficients Fare clic per modificare lo stile del titolo of cyclic-averaged noise powers cyclic-averaged noise power t ( )2 1 [i ] 2 2 T / TAC 1 ~ i 0 2 T / TAC 1 i 0 PLC for the Smart Grid – IEEE SmartGridComm 2011 t 2 2 [i ] ( 1 [i ] 1 [i ] ) ( 2 [i ] 2 [i ] ) 2 2 ( 1 [i ] 1 [i ] ) 2 2 TAC/2 cyclic-averaged powers a half of a mains AC cycle cyclic-averaged powers TAC/2 average 2 (t ) 2 2 2 T / TAC 1 i 0 2 ( 2 [i ] 2 [i ] ) 2 2 2 A. Tonello, M. Katayama 78 Benefits of noise correlations Fare clic per modificare lo stile del titolo If noise at different outlets have correlations Noise at each receiver has correlations, Noise at a transmitter has correlations to that at each receiver. Transmitter can have knowledge of the noise at the receivers, transmit data with modulation/coding adaptive to the noise at the receivers. If Transmitter know the Correlations in instantaneous noise voltages instantaneous noise powers cyclic-averaged noise powers PLC for the Smart Grid – IEEE SmartGridComm 2011 noise waveforms time varying SNR SNR as a periodic function A. Tonello, M. Katayama 79 Noise voltage Scattering diagram Fare clic per modificare lo stile del titolo of the instantaneous noise voltages t Noise voltage t PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 80 Measurement system Fare clic per modificare stili del testo dello schema – Secondo livello A • Terzo livello pickup – Quarto livello » Quinto livello T=1[s] B pickup UPS: Uninterruptible Power Supply PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 81 Typical cable structure in Japan Fare clic per modificare stili del testo dello schema – Secondo livello to outlet • Terzo livello – Quarto livello » Quinto livello to outlet Three-wire single-phase AC frequency: 60Hz PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 82 Measurement locations Fare clic per modificare stili del testo dello schema – Secondo livello • Terzo livello – Quarto livello » Quinto livello Cases outlet pair I II PLC for the Smart Grid – IEEE SmartGridComm 2011 Outlets open A. Tonello, M. Katayama 83 Noise at Outlet-1 Noise at Outlet-3 Noise voltage at Outlet-3 [mV] Case Fare Iclic (same per mains modificare phaselo/stile open del outlets) titolo Correlation coefficients Noise voltage at Outlet-1 [mV] 86% High power 77 % instantaneous noise powers: correlations ~ cyclic-averaged noise powers : 98% instantaneous noise voltages: PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 84 Noise at Outlet-1 Noise at Outlet-2 Correlation coefficients Noise voltage at Outlet-2 [mV] Case (different mains phase / open Fare IIclic per modificare lo stile del outlets titolo ) Noise voltage at Outlet-1 [mV] Low 0 . 68 % instantaneous noise voltages: correlation instantaneous noise powers: cyclic-averaged noise powers : PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 85 Fare clic per modificare lo stile/ open del titolo Case II (different mains phase outlets) Noise at Outlet-1 Noise at Outlet-2 cyclic-averaged noise powers at Outlet-1 cyclic-averaged noise powers at Outlet-2 Correlation coefficients 0.68% instantaneous noise voltages: instantaneous noise powers: power 24% ~ cyclic-averaged noise powers : 97% PLC for the Smart Grid – IEEE SmartGridComm 2011 High correlation A. Tonello, M. Katayama 86 Noise voltage at Outlet-2 [mV] Noise at Outlet-1 with Noise voltage at Outlet-3 [mV] Cases III & IV modificare (vacuum cleaner Outlet-1) Fare clic per lo stileatdel titolo as a strong noise source Correlation coefficients Noise voltage at Outlet-1 [mV] Noise voltage at Outlet-1 [mV] Case III Case IV same mains phase different mains phase instantaneous noise voltages: 48% 1.3% instantaneous noise powers: cyclic-averaged noise powers : ~ 69% PLC for the Smart Grid – IEEE SmartGridComm 2011 power 24% power 8.7% ~ 78% A. Tonello, M. Katayama 87 Physical Layer PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 88 Fare clicSingle per modificare Carrier Modulation lo stile del titolo Code division multiple access has been investigated Frequency shift keying (FSK) has been implemented in NB modems PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 89 FareUnified clic perView modificare of MC lo Modulation stile del titolo b(k)(mN): QAM data symbols g(k)(n): sub-channel pulses, obtained from the modulation of a prototype pulse N: interpolation factor N ≥ M number of sub-channels PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 90 Fare clicCyclically per modificare Prefixed lo OFDM stile del titolo M tones (sub-channels) Rectangular sub-channel pulse (window) of duration N > M samples Cyclic prefix (CP) of length µ=N-M samples (typically longer than the channel duration) PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 91 Fare clic per modificare Notchinglo stile del titolo It is fundamental to generate low radiations in certain parts of the spectrum, e.g., Radio amateur signals Further notching can be done beyond 30 MHz to grant coexistence with other systems Notching Mask PSD [dBm/Hz] -40 -50 -60 - 80 dBm/Hz FM -70 -80 917 tones out of 1536 -90 0 10 20 30 PLC for the Smart Grid – IEEE SmartGridComm 2011 40 50 f [MHz] 60 70 80 90 100 A. Tonello, M. Katayama 92 Fare clic per modificare lo stile del titolo It is fundamental to generate low radiations in certain parts of the spectrum, e.g., Radio amateur signals Further notching can be done beyond 30 MHz to grant coexistence with other systems Notching Mask PSD [dBm/Hz] -40 -50 -60 FM -70 -80 917 tones out of 1536 -90 0 10 20 30 PLC for the Smart Grid – IEEE SmartGridComm 2011 40 50 f [MHz] 60 70 80 90 100 A. Tonello, M. Katayama 93 FareSpectrum clic per modificare of OFDM and lo stile PS-OFDM del titolo PS-OFDM OFDM Pulse Shaped OFDM - Spectra of three adjacent sub-channels OFDM - Spectra of three adjacent sub-channels 0 0 -10 -10 -20 |G(f)| (dB) -30 2 2 |G(f)| (dB) -20 -40 -30 -40 -50 -50 -60 -60 -70 -70 -80 -4 -3 -2 -1 0 f MT 1 2 3 4 -80 -4 -3 -2 -1 0 f MT 1 2 3 4 Use a root-raised-cosine window (or other), to fulfill the mask with a higher number of active tones. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 94 Fare clic per Pulse modificare Shaped OFDM lo stile del titolo It is a filter bank system with a prototype pulse equal to the window If no symbol overlapping exists, we obtain windowed OFDM It introduces a transmisison rate penalty. Overhead β=µ+α=N-M The transmission rate is M R= M = N M + m+ a PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 95 Fare clic Filter per modificare Bank Approaches lo stile del titolo Can we increase the sub-channel frequency selectivity ? Yes, by privileging the frequency confinement What schemes are available ? Wavelet OFDM (solution adopted by IEEE P1901) Filtered Multitone Modulation (FMT) PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 96 Fare clic per modificare FMT Basics lo stile del titolo FMT - Spectra of three adjacent sub-channels 0 -10 2 |G(f)| (dB) -20 -30 -40 -50 -60 -70 -80 -4 -3 -2 -1 0 f MT 1 2 3 4 Pulses obtained from modulation of a prototype pulse Root-raised-cosine Time/Frequency confined pulses Perfect reconctruction solutions provided that N > M PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 97 Fare clic per Efficient modificare Realization lo stile del titolo Synthesis M point IDFT and Cyclic extension to M2 l.c.m.(M, N ) L1M L2N Pulses: PP components of order N, i.e., g ( i ) (nN ) g(i nN ) i 0,..., N 1 Sample with period L2 Analysis Dual operations Complexity: M log2M + Lg,h (pulse length) operations/sample Ref: Moret, Tonello, EURASIP JASP 2010 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 98 FareHow clic per to Increase modificare Performance lo stile del ?titolo Increase bandwidth (up to 100 MHz) Use high order QAM (beyond 10 bits/symbol) Perform adaptation of the transmitter parameters to the channel All respecting the stringent mask requirements ! PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 99 What Fare Can clic We per Gain modificare with Increased lo stile del Bandwidth titolo ? 1600 Channels Class 5 1400 OFDM, 100 MHz, -50 dBm/Hz 1000 600 400 40 41 42 OFDM,100 MHz, -80 dBm/Hz -80 800 -50 dBm/Hz Rate (Mbit/s) 1200 43 OFDM, 30 MHz, -50 dBm/Hz 44 45 46 channel realization 47 48 49 50 4096 Tones in 100 MHz, fixed CP=5.57 us, PSD noise -110 dBm/Hz PSD signal: -50 dBm/Hz + HPAV notching 0-30 MHz, -50/-80 dBm/Hz 30-87.5 MHz PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 What Fare Can clic We per Gain modificare with Increased lo stile del Bandwidth titolo ? 1600 Channels Class 5 1400 Capacity margin 1000 OFDM, 100 MHz, -50 dBm/Hz Capacity 800 margin Rate (Mbit/s) 1200 600 OFDM,100 MHz, -80 dBm/Hz Capacity 400 OFDM, 30 MHz, -50 dBm/Hz 40 41 42 43 44 45 46 channel realization 47 48 49 50 4096 Tones in 100 MHz, fixed CP=5.57 us, PSD noise -110 dBm/Hz PSD signal: -50 dBm/Hz + HPAV notching 0-30 MHz, -50/-80 dBm/Hz 30-87.5 MHz PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 Fare clicAdaptive per modificare OFDM and lo stile FMT del titolo We can adapt the pulse shape and the overhead β = N-M such that capacity is maximized 1 R (b ) = (M + b )T æ SINR(k ) (b )÷ ö çç ÷ log2 ç1+ ÷ å ÷ ç G ÷ k Î KON è ø [bit / s ] channel response For example, in CP-OFDM we adapt the CP to the channel response CP CP t t CP t Ref: Tonello, D’Alessandro, Lampe, IEEE TCOM 2010 Pecile, Tonello, IEEE ISPLC 2009 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 Example Fare clic of per Performance: modificareSystem lo stile del Parameters titolo Number of carriers: M={256,512,1024,2048,4096} SNR Gap for Pe=10-2: G=3.4 dB PSD of the transmitted signal: -50 dBm/Hz (in 0-100 MHz) PSD of the Gaussian background noise: -140 dBm/Hz Test channel response of class 5 Average SNR at the receiver: 44, 24 or 4 dB Pulse-Shaped OFDM: Raised-cosine window FMT: Truncated root-raised-cosine pulse Single tap equalization Fractionally spaced sub-channel equalization PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 Achievable Fare clic per Rate modificare as a Function lo stile of N. deloftitolo Tones Masked 2-100 MHz A: MHz Band, B:Masked, Masked,2-28 2-100 MHz Band, A: Masked, 2-100 MHz Band, Average SNR=44 dB Masked 2-28 MHz B: MHz Band, C:Masked, Masked,2-28 2-100 MHz Band, AverageSNR=44 SNR=24dB dB Average C: M Average SNR=4 dB dB Average SNR=24 30 Target 1000 below Pulse-ShapedOFDM OFDM Pulse-Shaped FMTEqual. Equal.1 1Tap Tap FMT FMTFS FSEqual. Equal.2 2Taps Taps FMT FMTFS FSEqual. Equal.10 10Taps Taps FMT FMTFS FSEqual. Equal.20 20Taps Taps FMT 300 500 250 450 -70 -80 -90 0 10 400 200 800 700 20 25 30 40 50 f [MHz] 60 70 80 90 100 100 350 60 30 250 100 500 40 80 150 300 600 Achievable Rate [Mbit/s] -60 Notching Mask Achievable Rate [Mbit/s] Achievable Rate [Mbit/s] -50 60 140 120 50 Achievable Rate [Mbit/s] Achievable Rate [Mbit/s] PSD [dBm/Hz] -40 Achievable Rate [Mbit/s] 900 160 Pulse-ShapedOFDM OFDM Pulse-Shaped FMTEqual. Equal.11Tap Tap FMT FMTFS FSEqual. Equal.22Taps Taps FMT FMTFS FSEqual. Equal.10 10Taps Taps FMT FMTFS FSEqual. Equal.20 20Taps Taps FMT 10 0 PLC for the Smart Grid – IEEE SmartGridComm 2011 4096 4096 2048 2048 (OverallSystem SystemCarriers) Carriers) MM(Overall 256 256 512 512 1024 1024 4096 2048 1024 256 512 M (Overall System Carriers) 0 (OverallSystem SystemCarriers) Carriers) MM(Overall 4096 4096 50 150 20 2048 2048 300 10 5 256 256 512 512 1024 1024 400 15 40 20 200 20 A. Tonello, M. Katayama M (O 256 512 1100 Pulse-Shaped OFDM FMT Equal. 1 Tap FMT FS Equal. 2 Taps notching mask FMT FS Equal. 10 Taps FMT FS Equal. 20 Taps 30 MHz: HPAV 10 Fare clic perFMT modificare vs. PS-OFDM lo stile del titolo The lower the SNR the higher is the advantage of FMT w.r.t. PS-OFDM FMT has better notching capability FMT achieves the maximum rate with a smaller number of tones Achievable rate can be used as a design metric to choose properly the number of carriers and the equalization method in the system Adaptation of the parameters is beneficial The achievable rate increases significantly using 100 MHz band (depending, however, on the transmitted PSD beyond 30 MHz) PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 Other Modulation Schemes PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 Fare clic per modificare I-UWB lo stile del titolo For low data rate: Impulsive UWB PSD of Transmitted Signal and Noise -80 T cL -1 signal (u,i) frame format for user u and spreading code i Tf Tg Gaussian monocycle D=75 ns, Tf = 2 us, R = 0.5 Mpulses/s. Symbol energy is spread in frequency by the monocycle (frequency diversity) The monocycle is spread in time via a binary code (time diversity) Coexistence with broadband systems is possible PLC for the Smart Grid – IEEE SmartGridComm 2011 -90 PSD (dBm/Hz) c0(u,i) -100 -110 noise -120 -130 -140 0 20 40 60 frequency (MHz) 80 100 Ref: Tonello, EURASIP JASP 2007 A. Tonello, M. Katayama 10 Fare Comparison clic per modificare of I-UWB with lo stile NB-OFDM del titolo To be done based on SGComm paper PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 optimum design of PLC modem PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 10 Receiver using Correlations of Noise at Different Frequencies PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 Performance Improvement under Fare clicnon-white/non-stationary per modificare lo stile del titolo Noise If noise statistics of each frequency-time cell (at a receiver) are known by a receiver → optimum reception . by a transmitter → adaptive modulation/coding Estimation of noise statistics is possible by cyclic features by the observation at vacant frequency/time slots. PLC for the Smart Grid – IEEE SmartGridComm 2011 TAC A. Tonello, M. Katayama 11 Instantaneous Power of Band-Limited Noise Fare clicat per modificare lo stile del titolo different frequency sub-bands. Measured at 22:00 on Nov. 25 2002. (3.197MHz,54kHz) (3.305MHz,54kHz) •Cyclo-Stationary with a period TAC/2. •Instantaneous noise power in different frequency looks alike. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 Farenon-white/non-stationary clic per modificare lo stileNoise del titolo Estimation of noise statistics is possible by cyclic features by the observation at vacant frequency/time slots. TAC PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 Fare clic perSimple modificare Example lo stile del titolo OFDM: frame =TAC/2 Intentional vacant sub-channels FEC Interleaver Mapping of a coded bit as far as possible in time-frequency plane FEC Decoder Simple M repetition Estimates of noise variance of each cells used for weighting. Estimation of noise variance cyclic average of the noise variance at the vacant sub-channel for K frames. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 System parameters Fare clic per modificare lo stile del titolo for the simple examples The number of subcarriers (communication band / outband) The number of symbols in a frame The number of frames to estimate the noise Code rate 2 (1/1) 450 1,5, 10,50 1/3 noise Real measured power-line noise •Environment A •Environment B PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 Fare clic per modificare Transmitter lo stile del titolo Repetition code Code rate : 1/M One frame = TAC/2 Mapping rule: M code bits each bit in a code word is tried to be located as far as possible in time-frequency space TAC/2 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 Fare clic per Estimation modificare method lo stile del titolo Communication band Outband .…. K frame PLC for the Smart Grid – IEEE SmartGridComm 2011 The average of squared values of these samples is used as the estimate of the instantaneous noise power. A. Tonello, M. Katayama 11 Fare clic per modificare Receiverlo stile del titolo 1 1 PLC for the Smart Grid – IEEE SmartGridComm 2011 1 1 A. Tonello, M. Katayama 11 Fare clicPerformance(Environment per modificare lo stile del titolo BER A) (99kHz,54kHz) Instantaneous noise power Correlation coefficient : 0.34 (45kHz,54kHz) Cyclic-average noise power Correlation coefficient : 0.75 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 11 Fare clic BER per Performance modificare lo (Environment stile del B) titolo (3.305MHz,54kHz) Instantaneous noise power Correlation coefficient : 0.99 (3.197MHz,54kHz) Cyclic-average noise power Correlation coefficient :0.99 PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 Transmitter and Receiver using Correlations of Noise at the both ends of a PLC chanel PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 Relationship of noiselo waveforms Fare clic per modificare stile del titolo Noise waveforms at different outlet – mainly caused by the same electrical appliances – Noise waveforms may have correlations PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 data assignment Fare clic Adaptive per modificare lo stile del titolo Input Data Encoder OFDM Interleaver Modulator Noise Reference at Rx Power-line channel Noise Reference OFDM Demodulator PLC for the Smart Grid – IEEE SmartGridComm 2011 Deinterleaver at Tx Decoder Output Data A. Tonello, M. Katayama 12 for numerical examples FareParameters clic per modificare lo stile del titolo Parameters Number of Subcarriers Symbols/Frame Coding (Repetition) Rate Freq. of the Lowest Subcarrier Bandwidth PLC for the Smart Grid – IEEE SmartGridComm 2011 4 450 1/3 250kHz 54kHz A. Tonello, M. Katayama 12 FareBit clic per Rate modificare stile del titolo Error (High lo Correlation) 周期的平均電力 相関係数:97% ˆ 2 n,l 2 n,l Tx Rx PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 FareBit clicError per modificare lo stile del titolo Rate (Low Correlation) 周期的平均電力 相関係数:57% ˆ 2 n,l 2 n,l Tx Rx PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 Medium Access Control and Cooperation Techniques PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 Fare clic per MAC modificare in BB-PLC lo stile del titolo PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 Fare clic per MAC modificare in NB-PLC lo stile del titolo PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 12 Cooperative Algorithms PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 13 Fare clic perRelay modificare Techniques lo stile del titolo To be done PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 13 Fare clic per modificare Floodinglo stile del titolo To be done PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 13 Protocols for Sensing and Control PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 13 FareMultipoint clic per modificare cyclic data lo gathering stile del titolo Smart Grid/Energy Saving Context A base-station collects (quasi) real time information from many nodes in a wide area – Energy consumptions – Environmental information (ex. temperature, humidity, illumination) – Electric generations (ex. photovoltaic, wind-power) Features – Many nodes in wide area – Cyclic observation in each node ( Cyclic packet generation) – Small and constant packet size – No retransmission PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 134 13 Faremultipoint clic per modificare data gathering lo stilesystem del titolo Base-station collects (quasi) real time information in wide area using a PLC network. Energy consumptions Cyclostationaly Environmental information Electric generations environment Long term change Many nodes in wide area Periodically generation Small size data t t Basestation t PLC network t nodes PLC for the Smart Grid – IEEE SmartGridComm 2011 135 A. Tonello, M. Katayama 13 Fare Access clic control per modificare methodloforstile thedel system titolo Demand assignment × The overhead for assignment degrades channel efficiency. Random access – CSMA × Hidden terminal problem degrades the performance. – ALOHA • pure-ALOHA • slotted-ALOHA Basestation Features of the system Many nodes in wide area Periodically generation Small size data Cyclostationaly environment Long term change PLC network nodes PLC for the Smart Grid – IEEE SmartGridComm 2011 136 A. Tonello, M. Katayama 13 Fare Access clic control per modificare methodloforstile thedel system titolo Random access Mains AC voltage can be used as a common clock – ALOHA • pure-ALOHA Some nodes experience collisions periodically. • slotted-ALOHA t t Basestation t PLC network t nodes PLC for the Smart Grid – IEEE SmartGridComm 2011 137 A. Tonello, M. Katayama 13 Fare clic per modificare lo stile del titolo To be done by Masaaki (adding from Ohtomo 2010/2011) PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 13 Standardization PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 13 Fare Standard: clic perIEEE modificare P1901 and lo stile ITU-T delG.hn titolo IEEE P1901 covers both indoor (in-home) and outdoor PLC (last mile) – Two frequency bands • 2-30 MHz: rate up to 200 Mbit/s. 2-60 MHz: rate up to 545 Mbit/s – PHY 1: Windowed OFDM with turbo coding (from HPAV) – PHY 2: Wavelet OFDM with RS/CC and LDPC (from Panasonic HD-PLC) – MAC: TDMA for QoS traffic and CSMA for best effort traffic. The MAC is technology dependent. Coexistence mechanism for interoperability. ITU-T G.9960 (G.hn) – PHY and MAC for in-Home devices that use power line, coax, and phone lines. – Frequency bands • 2-50 MHz (optional 50-100 MHz): rate up to 1 Gbit/s – PHY: scalable windowed OFDM (2048 tones for PLC) – MAC layer: TDMA for QoS traffic, CSMA for best effort traffic – Coexistence with IEEE P1901 devices but not interoperability PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 14 Standards: Fare clic per IEEE modificare P1901.2 lo and stile ITUdel G.hnem titolo IEEE P1901.2: just started – Narrow band (less than 500 kHz) PLC standard for both AC and DC lines: • low voltage indoor/outdoor, as well as medium voltage in both urban and in long distance (multi-kilometer) rural communications – Scalable data rates up to 500 kbps depending on the requirements – It addresses communication for: • Grid to utility meter, management of local energy generation devices • Electric vehicle to charging station • In-home networking for command-and-control ITU-T G. hnem: started in 2010 – MAC & PHY for in-home energy management, LV only PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 14 Convergent SG Network PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 14 Fare clic per modificare lo stile del titolo Coexistence Interoperability Convergence with other technologies To be done …. PLC for the Smart Grid – IEEE SmartGridComm 2011 A. Tonello, M. Katayama 14