ISTM-CNR CVD SYNTHESIS AND PHOTOCATALYTIC ACTIVITY OF ZnO NANOPLATELETS Padova University INSTM C. Maccato*2, D. Barreca1, A. P. Ferrucci2, A. Gasparotto2, C. Maragno2, E. Tondello2 1 ISTM-CNR and INSTM - Padova, Italy 2 Department of Chemistry - Padova University and INSTM Padova, Italy *[email protected] VI Convegno Nazionale sulla Scienza e Tecnologia dei Materiali – Perugia 12-15 Giugno 2007 Zinc oxide (ZnO) Wurtzite (hexagonal lattice) Zn O n-type semiconductor EG3.4 eV Main interests: Optoelectronics Gas Sensing Energetics Photocatalysis PHOTOCATALYSIS • The aim of semiconductor photocatalysis is to effectively decompose organic pollutants. • Photons are used to create electron – hole pairs in the semiconductor. e- + O2 → O2h+ + OH- → OH A ˉ Conduction Band Reduction A Valence Band + DOxidation D Photocatalytic Activity depends on: •The competition between separation and recombination processes of charge carriers (e-, h+). •Surface catalysts-dye charge transfer and efficient surface adsorption/desorption processes. AIM: Synthesis of nanosystems characterized by a high surface/volume ratio using a bottom-up CVD approach . Zn(hfa)2TMEDA (Hhfa=1,1,1,5,5,5-hexafluoro-2,4pentanedionate; TMEDA=N,N,N’,N’tetramethyilethylendiamine) Zn(NO)3·xH2O + 1,1,1,5,5,5-hexafluoro-2,4-pentanedione + N,N,N’,N’-tetramethylethylendiamine Zn(hfa)2(TMEDA) C N Yield = 63% H 2nd Generation precursor O Zn • high volatility and thermal stability •one-pot synthesis F Tobin J. Marks et al., J. Am. Chem. Soc., (2005) 127, 5613. ZnO NANOSYSTEMS ZnO F(O2+H2O) = 40 sccm F(N2) = 40 sccm CVD 10 mbar, 60’ Si(100) T[Zn(hfa)2(TMEDA)] = 60°C Tsub. = 250-500°C Zn(hfa)2(TMEDA) Thickness [Φ(O2+H2O)] Tsub. 256 209 128 64 250 300 350 400 450 500 °C 111 128 nm FE-SEM Water effect on morphology No H2O Thin film Tsub= 400°C 100 nm 100 nm Nanoplatelets (NPTs) With H2O Tsub= 400°C 100 nm 100 nm The obtained systems show very different morphologies Tsub EFFECT 100 nm 100 nm NPTs mean thickness ~ 5.5 nm System porosity is temperature – dependent. Different photocatalytic activity is expected No variations of NPTs morphology after thermal treatment (600°C, 2h) (a) 250°C 350°C (d) 350°C 100 nm 100 nm (e) 250°C 100 nm 100 nm (c) (b) 450°C (f) 450°C The expected intensity ratio I002/I101 for ZnO powders is 0.44. GIXRD In the synthesized NPTs the I002/I101 ratio depends on Tsub with a maximum value of 3.4 at Tsub= 350°C. 500°C 450°C 400°C 350°C 300°C 20 30 (102) (002) (101) (100) 250°C 2 J (degrees) 40 50 O ZnO(001) surface is polar. The Lewis acids sites exposed on the surface are very reactive toward the chemisorption of both H2O and OH- groups. ZnO(001) Surface Zn XPS Auger Parameter - Oxygen Zinc Silicon 80 KE = hυ - BE 60 = BE(XPS) + % KE (Auger) Tsub=350°C 40 ZnO Auger Peak: ZnLMM XPS peak: Zn2p3/2 ZnO, literature≈ 2010.1 eV 20 0 0 50 100 150 Sputtering time (min) C and F XPS signals disappear after a mild sputtering indicating that they are only surface contaminants. ZnO ≈ 2010.2 eV AFM Photocatalytic activity ZnO/Si(100) Orange II solution (2.4*10-6 M , pH ~ 6) UV irradiation (125 W) (a) nm 30 10 200 200 400 400 600 800 600 800 (Cdye/Cdye,0)*100 (%) 100 nm 80 (b) nm 40 20 60 200 200 400 40 NPTs 400°C RMSR = 6 nm 400 600 600 800 20 NPTs 350°C RMSR = 32 nm ZnO NPTs (350°C) ZnO NPTs(400°C) ZnO thin film (400°C) 800 nm (c) 0 0 100 200 300 Irradiation time (min) nm 12 6 200 Decomposition process shows a pseudo-first order kinetics K350°C (min-1) = 4.9*10-3 200 400 400 600 600 800 800 nm Film 400°C RMSR = 2 nm CONCLUSIONS Synthesis of ZnO NPTs on Si(100) starting from Zn(hfa)2·TMEDA. Tailoring of nanostructure and morphology as a function of processing conditions. Higher photocatalytic efficiency of ZnO NPTs with respect to continuous films. PERSPECTIVES Syntesis of ZnO-TiO2 nanocomposites. Evaluation of their photocatalytic and gas sensing performances as a function of synthesis parameters. XPS Zn 2p3/2 1025 1020 BE (eV) O1s Intensity (a.u.) Intensity (a.u.) XPS Signals pertaining to ZnO sample deposited at 350°C Zn-OH 536 Zn-O 532 528 BE (eV) O (a) ZnLL’ O H H H H H H H H O O O O O O Si Si Si Si Si Si Ruolo dei gruppi –OH nella crescita pseudocolonnare O O OH ZnLL’ ZnLL’ O H H H H H H H O O O O O O Si Si Si Si Si Si O … (b) ZnO Si(100) Zn RISULTATI ANALISI SEM 1.4 1.2 ln v (nm/min) 1.0 0.8 0.6 0.4 0.2 1.3 1.4 1.5 1.6 1.7 -1 1/T (K ) CAMPIONI/ T (°C) SPESSORE FILM (nm) LUNGHEZZA SCAGLIE (nm) SPESSORE MEDIO SCAGLIE (nm) ZnO19/250 111 ± 2 55 5.5 ZnO18/300 128 ± 3 60 5.5 ZnO17/350 256 ± 5 66 5.5 ZnO14/400 209 ± 5 76 5.5 ZnO15/450 128 ± 3 56 5.5 ZnO16/500 64 ± 2 33 5.5 -3 1.9x10 Alla temperatura del supporto di 350°C si ha la deposizione migliore Zn(hfa)2TMEDA - CARATTERIZZAZIONE 100 m.p.=104-106°C 3.0 e massa(%) analisi 1H- 80 13C-NMR analisi termiche 2.5 2.0 60 1.5 40 ln[velocità vaporizzazione (mmol/min)] 1.0 -4 sperimentale fit 20 0.5 0 0.0 50 -5 100 150 200 T(°C) 250 -6 ► singolo processo di sublimazione senza decomposizione -7 ► Perdita in peso = 98% -8 2.6 2.7 2.8 -1 1/T(K ) -3 3.0x10 ln p1 – ln p0 = (H0vap/R)(T0-1 –T1-1) H°vap = 102 1 kJ/mol derivata massa (%/°C) analisi elementare C=32,29%, H=2,87%, N=4,64% CVD Chemical Vapor Deposition Centro metallico Legante u y Gas reattivo R v x R w R R R Substrato R z R R CVD - termico u Trasporto di massa v Diffusione verso la superficie w Reazione superficiale x Desorbimento sottoprodotti y Eliminazione sottoprodotti z Nucleazione e crescita source J2 J2 detector J1 J1 XRD detects only reflections for planes parallel to the sample surface detector source GIXRD enhancement of surface sensitivity J2 J1 ORANGE II Assorbanza (a.u.) 0 min 15 min 45 min 75 min 135 min 195 min 255 min 315 min 300 400 500 (nm) 600 700