Proprietà Osservative delle Binarie X Contenenti Stelle di Neutroni Tiziana Di Salvo Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo Via Archirafi 36- 90123 Palermo Italy Scuola Nazionale di Dottorato Cagliari, May 25 2007 X-ray Binaries Classification • High Mass X-ray Binaries: Young objects with a high mass companion star (> 10 Msun) and (usually) High magnetic field (about 1012 Gauss) neutron stars Cyclotron lines Ec 12 11.6B12 (unit of 10 Gauss) Scuola Nazionale di Dottorato Cagliari, May 25 2007 X-ray Binaries Classification • High magnetic field neutron stars in X-ray binaries • Black Hole Candidates in X-ray binaries Scuola Nazionale di Dottorato Cagliari, May 25 2007 X-ray Binaries Classification • High magnetic field neutron stars in X-ray binaries • Black Hole Candidates in X-ray binaries • Low magnetic field neutron stars in X-ray binaries: temporal and spectral analysis Scuola Nazionale di Dottorato Cagliari, May 25 2007 Caratteristiche generali dell’accrescimento • Energia liberata: • Luminosità: – Valore massimo dato dalla luminosità di Eddington • Efficienza: – Valore tipico per una NS: – Valore tipico per la fusione nucleare: Scuola Nazionale di Dottorato Cagliari, May 25 2007 Caratteristiche generali Range tipico di emissione Emissione X e γ • Modalità di accrescimento: – Accrescimento tramite venti stellari.(Binarie X di alta massa) – Accrescimento tramite tracimazione dal lobo di Roche.(Binarie X di bassa massa) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Mass Transfer in LMXBs: Roche Lobe Overflow Potenziale di Roche Scuola Nazionale di Dottorato Cagliari, May 25 2007 X-ray pulsars Scuola Nazionale di Dottorato Cagliari, May 25 2007 PL a~1 BB Ecyc Fe Lines Wien Hump DalNazionale Fiume et al. 1998 Scuola di Dottorato Cagliari, May 25 2007 Cyclotron lines ωc eB ; ωn nωc ; γmc ωn mc 2 mc 2 2 nωc sin2 θ 1 sin2 θ E c 11.6B12 12 (unit of 10 Gauss) Meszaros, 1992 d c 8 ln 2kT cos 2 mc Scuola Nazionale di Dottorato Cagliari, May 25 2007 Coburn et al. 2002 Meszaros 1992 d c 8 ln 2kT cos 2 mc Orlandini & Dal Fiume 2001 Santangelo et al. 2003 Scuola Nazionale di Dottorato Cagliari, May 25 2007 Multiple Harmonics? BeppoSAX has discovered or has evidence of multiple harmonics in some of the sources, therefore establishing the presence of second harmonic as a rather common feature! CEN X-3 4U1907 4U1626-67 (?) There are however some “extraordinary” observations…. VELA X-1 (?) Scuola Nazionale di Dottorato Cagliari, May 25 2007 The case of X0115+63 The EW of harmonics were found to be larger than the fundamental Deep 2nd harmonic E1cyc @ 12.74 E2cyc @ 24.16 keV E3cyc @ 35.74 E4cyc @ 49.5 keV E5cyc @ 60. keV Santangelo et al. 1999 Similar asymmetric variations of the cyclotron line energy (up to 8 keV) were observed in Cen X-3 (Burderi et al. 2000). These variations of the cyclotron line energy could be explained by assuming an offset (~ 0.1 RNS) of the dipolar magnetic field with respect to the neutron star center. Offsets are also suggested by an analysis of pulse profiles (Leahy 1991). Scuola Nazionale di Dottorato Cagliari, May 25 2007 Low Mass X-ray Binaries Close X-ray binaries: Compact object: NS with B < 1010 G Companion star: M < 1 MSUN Accretion disk Scuola Nazionale di Dottorato Cagliari, May 25 2007 Low Mass X-ray Binaries Close X-ray binaries: • Rich time variability, such as twin QPOs at kHz frequencies (from 400 to 1300 Hz, increasing with increasing mass accretion rate); kHz QPOs are thought to reflect Keplerian frequencies at the inner accretion disk. Compact object: NS with B < 1010 G Companion star: M < 1 MSUN Accretion disk Scuola Nazionale di Dottorato Cagliari, May 25 2007 kHz QPOs Possibly related to Keplerian frequencies at the inner edge of the disk. Two peaks are usually present, whose frequency increses when the mass accretion rate increases, with almost constant separation. Sco X-1 4U 1608 The peak separation is almost equal to the NS spin frequency (if known from pulsations or burst oscillations) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Low Mass X-ray Binaries Close X-ray binaries: • Rich time variability, such as twin QPOs at kHz frequencies (from 400 to 1300 Hz, increasing with increasing mass accretion rate); kHz QPOs are thought to reflect Keplerian frequencies at the inner accretion disk. • Type-I X-ray bursts, with nearly coherent oscillations in the range 300-600 Hz (probably the NS spin frequency). • Some are transient, with quiescent luminosities of 10321033 erg/s and outburst luminosities of 1036-1038 erg/s. Compact object: NS with B < 1010 G Companion star: M < 1 MSUN Accretion disk Scuola Nazionale di Dottorato Cagliari, May 25 2007 Radio Pulsars The energy lost in electromagnetic radiation and relativistic particle beam comes from the rotational energy of the pulsar, which slows down. . . Measuring P and P allows to derive m: B ~ 108 Gauss for MSPs Scuola Nazionale di Dottorato Cagliari, May 25 2007 The “classical” recycling scenario Low mass X-ray Binaries 8 Progenitors (Pspin >> 1ms) 9 B ~ 10 – 10 G Low mass companion (M ~ 1 Msun) Millisecondofradio End products (Pspin ~ 1ms) Accretion mass from the companion causes spin-up Pulsars 8 9 B ~ 10 – 10 G Low mass companion (M ~ 0.1 Msun) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Scuola Nazionale di Dottorato Cagliari, May 25 2007 Confirmed by 7 (transient) LMXBs which show X-ray millisecond coherent pulsations Known accreting millisecond pulsars (in order of increasing spin period): IGR J00291+5934: Ps=1.7ms, Porb=2.5hr (Galloway et al. 2005) XTE J1751-306: Ps=2.3ms, Porb=42m (Markwardt et al. 2002) SAX J1808.4-3658: Ps=2.5ms, Porb=2hr (Wijnands & van der Klis 1998) HETE J1900.1-2455: Ps=2.7ms, Porb=1.4hr (Kaaret et al. 2005) XTE J1814-338: Ps=3.2ms, Porb=4hr (Markwardt et al. 2003) XTE J1807-294: Ps=5.2ms, Porb=40m (Markwardt et al. 2003) XTE J0929-314: Ps=5.4ms, Porb=43.6m (Galloway et al. 2002) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Rossi X-ray Timing Explorer RXTE carries 5 Proportional Counter Units, which constitues the Proportional Counter Array (PCA), with a large effective area of about 6000 cm2 and very good time resolution (up to 1 msec), working in the X-ray range (2-60 keV) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spin Frequencies of AMSPs All the spin frequencies are in the rather narrow range between 200 and 600 Hz. (From Wijnands, 2005) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Light Curves of AMSPs (X-ray Outburst of 2002) All the 7 known accreting MSPs are transients, showing X-ray outbursts lasting a few tens of days. Typical light curves are from Wijnands (2005) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Disc – Magnetic Field Interaction Disc Pressure . proportional to M Magnetic Pressure Proportional to B2 Rm = 10 B84/7 dotM-8-2/7 m1/7 km Scuola Nazionale di Dottorato Cagliari, May 25 2007 Accretion conditions (Illarionov & Sunyaev 1975) Rco = 15 P–32/3 m1/3 km RLC = 47.7 P–3 km Accretion regime R(m) < R(cor) < R(lc) Pulsar spin-up • accretion of matter onto NS (magnetic poles) • energy release L = dotM G M/R* • Accretion of angular momentum dL/dt = l dotM where l = (G M Rm)1/2 is the specific angular momentum at Rm Scuola Nazionale di Dottorato Cagliari, May 25 2007 Pulsars spin up The accreting matter transfers its specific angular momentum (the Keplerian AM at the accretion radius) to the neutron star: L=(GMRacc)1/2 2 The process goes on until the pulsar reaches the keplerian velocity at Racc (equilibrium period); Pmin when Racc = Rns Pmin << 1 ms for most EoS The conservation of AM tells us how much mass is necessary to reach Pmin starting from a non-rotating NS. Simulations give ~0.3Msun (e.g. Lavagetto et al. 2004) During the LMXB phase ~1 Msun is lost by the companion Scuola Nazionale di Dottorato Cagliari, May 25 2007 Propeller phase . M Propeller regime R(cor) < R(m) < R(lc) • • • • centrifugal barrier closes (B-field drag stronger than gravity) matter accumulates or is ejected from Rm accretion onto Rm: lower gravitational energy released energy release L = e GM(dM/dt)/R*, e = R*/2 Rm Scuola Nazionale di Dottorato Cagliari, May 25 2007 Rotating magnetic dipole phase . M Radio Pulsar regime Rm > RLC • no accretion, radio pulsar emission • disk matter swept away by pulsar wind and pressure • Energy release given by the Larmor formula: L = 2 R6/3c3 B2 (2 p / P)4 Scuola Nazionale di Dottorato Cagliari, May 25 2007 Timing Technique • Correct time for orbital motion delays: t @ tarr – x sin 2p/PORB (tarr –T*) where x = a sini/c is the projected semimajor axis in light-s and T* is the time of ascending node passage. • Compute phase delays of the pulses ( -> folding pulse profiles) with respect to constant frequency • Main overall delays caused by spin period correction (linear term) and spin period derivative (quadratic term) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Accretion Torque modelling Bolometric luminosity L is observed to vary with time during an outburst. Assume it to be a good tracer of dotM: L= (GM/R)dotM with 1, G gravitational constant, M and R neutron star mass and radius Matter accretes through a Keplerian disk truncated at magnetospheric radius Rm dotM-a. In standard disk accretion a =2/7 Matter transfers to the neutron star its specific angular momentum l = (GM Rm)1/2 at Rm, causing a torque t = l dotM. Possible threading of the accretion disk by the pulsar magnetic field is modelled here as in Rappaport et al. (2004), which gives the total accretion torque: t = dotM l – m2 / 9 Rco3 Scuola Nazionale di Dottorato Cagliari, May 25 2007 IGR J00291: the fastest accreting MSP Porb = 2.5 h ns = 600 Hz 8 0 dotn = 8.5(1.1) x 10-13 Hz/s (c2/dof = 106/77) (Burderi et al. 2007, ApJ; Falanga et al. 2005, A&A) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Conclusions: Spin-up in IGR J00291 IGR J00291+5934 shows a strong spin-up: ndot = 1.2 x 10-12 Hz/s, which indicates a mass accretion rate of dotM = 7 10-9 M yr-1. Comparing the bolometric luminosity of the source as derived from the X-ray spectrum with the mass accretion rate of the source as derived from the timing, we find a good agreement if we place the source at a quite large distance between 7 and 10 kpc. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spin down in the case of XTE J0929-314 Porb = 44 min ns = 185 Hz Spin down in XTE J0929, the slowest among accreting MSPs. During the only outburst of this source observed by RXTE. Measured spin-down rate: dotn = -5.5 10-14 Hz/s Estimated magnetic field: B = 5 x 108 Gauss (Di Salvo et al. 2007) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Results for 6 of the 7 known LMXBs which show X-ray millisecond coherent pulsations Results for accreting millisecond pulsars (in order of increasing spin period): IGR J00291+5934: Ps=1.7ms, Porb=2.5hr SPIN UP XTE J1751-306: Ps=2.3ms, Porb=42m SPIN UP SAX J1808.4-3658: Ps=2.5ms, Porb=2hr SPIN UP (SPIN DOWN) HETE J1900.1-2455: Ps=2.7ms, Porb=1.4hr ?? XTE J1814-338: Ps=3.2ms, Porb=4hr SPIN DOWN XTE J1807-294: Ps=5.2ms, Porb=40m SPIN UP XTE J0929-314: Ps=5.4ms, Porb=43.6m SPIN DOWN These exclude GR as a limiting spin period mechanism Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spettri dei Black Holes Candidates in X-ray Binaries Stati hard o low •Sono fittati da: •Legge di potenza G = 1.4 – 1.9 •alle alte energie, con cutoff a circa 100 KeV. •Corpo nero alle basse energie (circa 0.1 keV) •Luminosità < 0.1 LEDD. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spettri dei BHXB Stati soft o high •Sono fittati da: •Corpo nero alle basse energie (temp. kT circa 0.51KeV) dominante rispetto alla legge di potenza. •Legge di potenza: G = 2 – 3 alle alte energie senza evidenza di cutoff fino a energie dell’ordine di circa 511KeV •Luminosità > 0.2-0.3LEDD. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spettri dei BHXB Stati molto alti Stati high o soft Stati intermedi Stati low o hard Stati di quiescenza Scuola Nazionale di Dottorato Cagliari, May 25 2007 Fe K-shell Line and Reflection Cygnus X-1: BeppoSAX Broad Band (0.1 – 200 keV) Spectrum Di Salvo et al. (2001) MECS MECS Schema della regione di emissione HPGSPC Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spettri dei BHXB: Componente di riflessione Compton • Componente di riflessione è dovuta all’incidenza della componente hard di Comptonizzazione sul disco di accrescimento. – Energia dei fotoni incidenti inferiore a circa 15 KeV: predomina il fotoassorbimento righe di emissione e bordi di assorbimento (sprattutto relativi al Fe). – Energia dei fotoni incidenti maggiore di 15KeV: predomina la riflessione Compton larga “gobba” tra circa 10 e 50 KeV. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Fe K-shell Line and Reflection Important information can be obtained from the iron line profile. Doppler and relativistic effects due to the keplerian motion in the disk modify the profile (double peak, Doppler boositng, Gravitational redshift). From high resolution spectra we can obtain info on the inner disk radius and inclination of the disk. HPGSPC Iron line profile E0 E Scuola Nazionale di Dottorato Cagliari, May 25 2007 Self consistent models of Compton reflection and associated iron line narrow Reflection from ionized matter Reflection from Neutral matter smeared Scuola Nazionale di Dottorato Cagliari, May 25 2007 High resolution spectroscopy of massive BHs: MCG-6-30-15 XMM observation of the iron line region in MCG-630-15 taken in 2001. The red wing extends to less than 4 keV, indicating an inner radius of less than 6 G M / C2. Spinning black hole? (a > 0.93) Fabian et al. 2002) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spettri di LMXB contenenti NS • Forti analogie con gli spettri di BHXBs:presenza di stati hard e soft. • Differenza nella temperatura della nube comptonizzante. Raffreddamento extra dovuto alla superficie della NS. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Neutron star low mass x-ray binaries classification sources: - Late Atoll type mass donor (usually K-M star) or white dwarf Lx NS ~ 0.01-0.1 - Accreting primary: L(Edd) fast spinning (2-3 ms), weakly magnetic type I X-ray burststype I X-ray bursts, - Characteristic phenomena: transients fast (> some 100 Hz) quasi periodic oscillations in the X-ray flux - Useful classification: Z-sources, Atoll sources Z-sources: Lx ~ 0.1-1.0 L(Edd) all persistent Scuola Nazionale di Dottorato Cagliari, May 25 2007 Atoll sources: energy spectra - Soft component (few keV) (blackbody or disk-blackbody model) - Power law with exponential cutoff (5-20 keV): Thermal Comptonization. - Soft and hard states: in the hard state the cutoff shifts to higher energies (up to > 200 keV) - Iron emission (fluorescence) line at ~6.4 keV - Evidence for a reflection component Scuola Nazionale di Dottorato Cagliari, May 25 2007 X-ray energy spectra of Z sources X-ray energy spectra up to up to ~20keV keV ~20 Two components needed (at least): - Eastern model (Mitsuda et al. 1984): multitemperature-blackbody + blackbody spectra (disk emission with kT = a R-3/4, and NS surface comptonized emission) - Western model (White et al. 1986): blackbody + Comptonized blackbody spectra (NS or disk emission, and disk emission modified by Comptonization in a hotter region). Scuola Nazionale di Dottorato Cagliari, May 25 2007 Fe K-shell Line in Neutron Star Low Mass X-ray binaries Chandra observation of the LMXB/atoll source 4U 170544 (Di Salvo et al. 2005, ApJ Letters) CC Mode 5 ks TE Mode 25 ks Scuola Nazionale di Dottorato Cagliari, May 25 2007 Fe K-shell Line in NS LMXBs TE Mode 25 ks Soft Comptonization model for the X-ray continuum plus 3 narrow lines and a broad Fe line: • E1 = 1.476 keV, s1 = 17 eV (ID: Mg XII Ly-a, 1.473 keV) • E2 = 2.03 keV, s2 = 28 eV (ID: Si XIV Ly-a, 2.006 keV) • E3 = 2.64 keV, s3 = 40 eV (ID: S XVI Ly-a, 2.6223 keV) • E_Fe = 6.54 keV, sFe = 0.51 keV EW = 170 eV Scuola Nazionale di Dottorato Cagliari, May 25 2007 Fe K-shell Line in Neutron Star Low Mass X-ray binaries Fitting the iron line profile with a disk (relativistic) line we find: TE Mode 25 ks Hints of a doublepeaked line profile • E_Fe = 6.40 keV • Rin = 7-11 Rg (15-23 km) • Inclination = 55 – 84 deg Alternatively, Compton broadening in the external parts of the Comptonizing corona (s = 0.5 implies t = 1.4 for kT = 2 keV) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Hard X-ray Emission in LMXBs: INTEGRAL/RXTE Observations of Sco X-1 Soft Comptonization: kT (seed) = 1.3 keV (fixed) kTe = 4.7 keV t = 2.4 ISGRI SPI Hard Power law: PI = 2.3 kT > 200 keV Flux 10-9 Flux 10-9 (20 – 40 keV) = 5.9 ergs/cm2/s (40 – 200 keV) = 0.33 ergs/cm2/s Di Salvo et al. (2005, ApJL) Scuola Nazionale di Dottorato Cagliari, May 25 2007 INTEGRAL/RXTE Observations of Sco X-1 Lowest dotM Hard power law Soft Comptonization PI = 2.7 kT > 290 keV Flux (40 – 200 keV) = 0.48 10-9 ergs/cm2/s Di Salvo et al. (2005, ApJL) Scuola Nazionale di Dottorato Cagliari, May 25 2007 INTEGRAL/RXTE Observations of Sco X-1 Highest dotM PI = 2.7 (fixed) Flux (40 – 200 keV) = 0.06 10-9 ergs/cm2/s Di Salvo et al. (2005, ApJL) Scuola Nazionale di Dottorato Cagliari, May 25 2007 NS hard tails: analogy with BHCs - BHCs in low state: extended power law with high energy cutoff (plus faint very soft and reflection components seen occasionally) Similar to hard state Atolls (Grove et al. 1998) - BHCs in IS/VHS: very soft thermal component plus power law without high energy cutoff up to 1 MeV Similar to Z-sources in HB-NB - BHCs in HS: very soft thermal component. Similar to Z-sources in NB-FB. Scuola Nazionale di Dottorato Hard X-ray NS/BHC indicators are uncertain at least Cagliari, May 25 2007! Geometry and Models for hard tails in NS binaries Origine della legge di potenza negli stati soft di BHXB e LMXBs: Ipotesi I: comptonizzazione termica Ipotesi II: (comptonizzazione non termica) caduta radiale della materia in corrispondenza di LSO. Ipotesi III: (comptonizzazione non termica) Jet relativistici Temperature altissime Non può spiegare l’hard tail nelle NS LMXB •Distribuzione a legge di potenza. •Evidenze radio in BH e NS. •Intensità radio maggiore più è intensa la componente hard. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Geometry and Models for hard tails in NS binaries Jet: hard tail ? Disk: soft X-rays Comptonising corona: hard tail ? - Bulk motion Comptonisation converging radial or disk inflow (Titarchuk & Zannias 1998; Luarent & Titarchuk 1999; Psaltis 2001) Inflow in Z-sources is strongly affected by radiation from the NS - Comptonisation by thermal e- in a corona predicts high energy cutoff - Comptonisation (or synchrotron radiation) by non-thermal e- in a (non-confined) corona or relativistic jets (Zdziarski 2000; Vadawale et al. 2001; Markoff et al. 2001) power law spectra can extend up to very high energies Scuola Nazionale di Dottorato Cagliari, May 25 2007 The radio connection: other NS binaries - Radio jets: likely a common phenomenon also in X-ray binaries Class Persistent BHCs Transient BHCs NS Z-sources NS Atoll sources Fraction as radio sources 4/4 ~15/35 6/6 ~5/100 (Fender 2001) - In Z sources (e.g. GX 17+2) radio flaring in the HB (i.e. low accretion rates) - Fewer searches (and detections) in Atoll sources Scuola Nazionale di Dottorato Cagliari, May 25 2007 The radio jets and states of NS X-ray binaries - Radio emission (probably due to jets) is anticorrelated with the mass accretion rate (Fender 2001) -Similarity with the hard X-ray tails! More simultaneous hard X-ray / radio observations are needed Scuola Nazionale di Dottorato Cagliari, May 25 2007 The end Thank you very much! Scuola Nazionale di Dottorato Cagliari, May 25 2007 Threaded disc model Dragging of the field line: a Bf component is generated Bz Bf W Bz = h m2 / R3 , h<= 1 screening factor Bf is amplificated by differential rotation up to: Bf = g / a [(W - WK)/WK]/Bz (a = SS viscosity, g >= 1) Where the amplification is limited by turbulent diffusion (Wang 1995) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Threaded disc model Yet, we do not have a self-consistent disc solution for this case of disk - magnetic field interaction. Possible threading of the accretion disk by the pulsar magnetic field gives a negative torque which is modelled here as in Rappaport et al. (2004): tmag = m2 / 9 Rco3 A self consistent solution of the Threaded Disc is required! Scuola Nazionale di Dottorato Cagliari, May 25 2007 Results for IGR J00291+5934 In a good approximation the X-ray flux is observed to linearly decrease with time during the outburst: dotM(t) = dotM0 [1-(t – T0)/TB], where TB = 8.4 days Assuming Rm dotM-a. (a = 2/7 for standard accretion disks; a = 0 for a constant accretion radius equal to Rc; a = 2 for a simple parabolic function), we calculate the expected phase delays vs. time: f = - f0 – n0 (t-T0) – ½ dotn0 (t – T0)2 [1 – (2-a) (t-T0)/6TB] We have calculated a lower limit to the mass accretion rate (obtained for the case a = 0 and no negative threading (m = 1.4, I45 = 1.29) dotM = 5.9 10-10 dotn–13 I45 m-2/3 Msun/yr Measured dotn–13= 11.7, gives a lower limit of dotM = (7+/-1) 10-9 Msun/yr, corresponding to Lbol = 7 x 1037 ergs/s Scuola Nazionale di Dottorato Cagliari, May 25 2007 Distance to IGR J00291+5934 The timing-based calculation of the bolometric luminosity is one order of magnitude higher than the X-ray luminosity determined by the Xray flux and assuming a distance of 5 kpc ! The X-ray luminosity is not a good tracer of dotM, or the distance to the source is quite large (15 kpc, beyond the Galaxy edge in the direction of IGR J00291 !) We argue that, since the pulse profile is very sinusoidal, probaly we just see only one of the two polar caps, and possibly we are missing part of the X-ray flux.. In this way we can reduce the discrepancy between the timingdetermined mass accretion rate and observed X-ray flux by about a factor of 2, and we can put the source at a more reliable distance of 7.4 – 10.7 kpc Scuola Nazionale di Dottorato Cagliari, May 25 2007 The Strange case of XTE J1807 The outburst of February 2003 (Riggio et al. 2007, in preparation) Scuola Nazionale di Dottorato Cagliari, May 25 2007 But… There is order beyond the chaos! The key idea: Harmonic decomposition of the pulse profile Scuola Nazionale di Dottorato Cagliari, May 25 2007 Timing of the second harmonic Scuola Nazionale di Dottorato Cagliari, May 25 2007 Back to the fundamental Scuola Nazionale di Dottorato Cagliari, May 25 2007 Positional Uncertainties of XTE J1807 (0.6’’) Scuola Nazionale di Dottorato Cagliari, May 25 2007 SAX J1808: the outburst of 2002 (Burderi et al. 2006, ApJ Letters) Phase Delays of The First Harmonic Phase Delays of The Fundamental Spin-up: Porb = 2 h n = 401 Hz dotn = 4.4 10-13 Hz/s Spin-down at the end of the outburst: dotn = -7.6 10-14 Hz/s Scuola Nazionale di Dottorato Cagliari, May 25 2007 SAX J1808.4-3658: Pulse Profiles Folded light curves obtained from the 2002 outburst, on Oct 20 (before the phase shift of the fundamental) and on Nov 1-2 (after the phase shift), respectively Scuola Nazionale di Dottorato Cagliari, May 25 2007 SAX J1808.4-3658: phase shift and X-ray flux Phase shifts of the fundamental probably caused by a variation of the pulse shape in response to flux variations. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Discussion of the results for SAX J1808 In a good approximation the X-ray flux is observed to decrease exponentially with time during the outburst: dotM(t) = dotM0 exp[(t – T0)/TB], where TB = 9.3 days derived from a fit of the first 14 days of the light curve. Assuming Rm dotM-a. (with a = 0 for a constant accretion radius equal to Rco), we calculate the expected phase delays vs. time: f = - f0 – B (t-T0) – C exp[(t-T0)/TB] + ½ dotn0 (t – T0)2 where B = n0 + C/TB and C = 1.067 10-4 I45-1 P-31/3 m2/3 TB2 dotM-10 (the last term takes into account a possible spin-down term at the end of the outburst). We find that the best fit is constituted by a spin up at the beginning of the outburst plus a (barely significant) spin down term at the end of the outburst. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Discussion of the results for SAX J1808 Spin up: dotn0 = 4.4 10-13 Hz/s corresponding to a mass accretion rate of dotM = 1.8 10-9 Msun/yr Spin-down: dotn0 = -7.6 10-14 Hz/s In the case of SAX J1808 the distance of 3.5 kpc (Galloway & Cumming 2006) is known with good accuracy; in this case the mass accretion rate inferred from timing is barely consistent with the measured X-ray luminosity (the discrepancy is only about a factor 2), Using the formula of Rappaport et al. (2004) for the spin-down at the end of the outburst, interpreted as a threading of the accretion disc, we find: m2 / 9 Rco3 = 2 p I dotnsd from where we evaluate the NS magnetic field: B = (3.5 +/- 0.5) 108 Gauss: (in agrement with previous results, B = 1-5 108 Gauss, Di Salvo & Burderi 2003) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Timing of XTE J1751 As in the case of SAX J1808, the X-ray flux of XTE J1751 decreases exponentially with time (TB = 7.2 days). The best fit of the phase delays corresponds to Rm dotM-a.wth a = 2/7, and gives dotn0 = 6.3 10-13 Hz/s and dotM0 = (3.4 – 8.7) 10-9 Msun/yr. Comparing this with the X-ray flux from the source, we obtain a distance of 9.7–15.8 kpc (or 7-8.5 kpc using the same arguments used for IGR J00291). (Papitto et al. 2007, in preparation) Porb = 42 min ns = 435 Hz Scuola Nazionale di Dottorato Cagliari, May 25 2007 Spin down in the case of XTE J1814 Papitto et al. 2007, MNRAS Phase Delays of The Fundamental Phase Delays of The First Harmonic Spin-down: dotn = -6.7 10-14 Hz/s Scuola Nazionale di Dottorato Cagliari, May 25 2007 Phase residuals anticorrelated to flux changes in XTE J1814-338 Modulations of the phase residuals, anticorrelated with the X-ray flux, and possibly caused by movements of the footpoints of the magnetic field lines in response to flux changes Post fit residuals of the Fundamental Post fit residuals of the harmonic Estimated magnetic field: B = 8 x 108 Gauss Scuola Nazionale di Dottorato Cagliari, May 25 2007 XTE J0929-314: the most puzzling AMSP The mass accretion rate is varying with time, while instead the phase delays clearly indicate a constant (or at most decreasing) spin-down rate of the source. We therefore assume nspin-up << -nspin-down = 5.5 x 10-14 Hz /s Assuming that the spin-up is at least a factor of 5 less than the spindown, we find a mass accretion rate at the beginning of the outburst of dotM < 6 x 10-11 Msun/yr, which would correspond to the quite low X-ray luminosity of Lbol < 6 x 1035 ergs/s. Comparing this with the X-ray flux of the source we find an upper limit to the source distance of about 1.2 kpc (too small !! Although this is a high latitude source) Scuola Nazionale di Dottorato Cagliari, May 25 2007 Conclusions: Spin-up XTE J1807-294 shows a noisy fundamental and a clear spin-up in the second harmonic: ndot = (1 – 3.5) 10-14 Hz/s. No clear diagnostic is possible, spin-up and spin-down may be both present. XTE J1751-306 shows a strong spin-up: ndot = 6.3 x 10-13 Hz/s, which indicates a mass accretion rate of dotM = (3.4 – 8.7) 10-9 M yr-1. Comparing the bolometric luminosity of the source as derived from the X-ray spectrum with the mass accretion rate of the source as derived from the timing, we find a good agreement if we place the source at a quite large distance between 7 and 8.5 kpc. Scuola Nazionale di Dottorato Cagliari, May 25 2007 Conclusions: Spin-down XTE J1814-338 shows noisy fundamental and harmonic phase delays, and a strong spin-down: ndot = -6.7 x 10-14 Hz/s, which indicates a quite large magnetic field of B = 8 108 Gauss. XTE J0929-314 shows a clear spin-down of ndot = -5.5 x 10-14 Hz/s, which indicates a magnetic field of B = 4-5 108 Gauss. Imposing that the spin-up contribution due to the mass accretion is negligible, we find however that the source is at the very close distance of about 1 kpc. Independent measures of the distance to this source will give important information on the torque acting on the NS and its response. Scuola Nazionale di Dottorato Cagliari, May 25 2007