Agenzia Provinciale per la Protonterapia Trento, Italy Aspetti fisici della radioterapia moderna - II: Treatment planning, IMRT, protoni Marco Schwarz [email protected] 23 Settembre 2010 Treatment Planning in 3D CRT 3D CRT Target defined in soft tissues on CT images Higher target/OAR doses than in 2D CRT 3D Treatment planning Safety margins must be considered while designing treatment field • ICRU 50(1993) and ICRU 62(1999) set the standard for dose planning and dose reporting reference volumes. • • • • PTV concept: pros CTV = Clinical Target Volume (visible + microscopic disease) PTV = Planning Target Volume • Forced people to explicitely incorporate geometrical uncertainties into treatment planning • Very appropriate tool for CRT: not too simple, not too complex. ‘Margin recipes’ Analytical solution for spherical targets (van Herk 2000) Derived/verified with simulations for real cases (e.g. Stroom 1999, Van Herk 2002) as a function of population-based data on geometrical uncertainties Different 'recipes' according to the desired probability level PTV planning= same dose prescription for all points above a given probability of presence for target cell PTV: cons • Use of accurately defined margins still quite rare • Dose homogeneity in the PTV became a must more for technical than for clinical reasons • N.B. IGRT mostly aims at reducing PTV margins without radically changing PTV-based RT techniques • Most important: the PTV concept works only if three assumptions are valid: PTV - playing by the rules The PTV is a tool for dose planning and dose reporting. There are three underlying assumptions: 1. The dose distribution is invariant for (small) translations and rotations 2. The margins are chosen appropriately as a function of the geometrical uncertainties one wants to compensate for 3. The dose distribution in the PTV is as homogeneous as possible. Condition1 is granted using photons, 2 and 3 must be ensured using correct planning practices. CTV + PTV expansion = OAR CTV ? OAR As if one should prefer homogeneous doses in the wrong PTV instead of heterogenous doses in the right PTV Treatment planning in IMRT More degrees of freedom More need to know what you want CRT IMRT How to tell a machine what we want from it ? Still struggling with TP in IMRT Inst.1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 Adapted from Das et al, JNCI 2007 In IMRT si hanno molti più gradi di libertà che in CRT, troppi per poter essere gestiti ‘a mano’. Gli scopi del trattamento devono essere espressi in un linguaggio comprensibile tanto dall’uomo quanto dalla macchina L’ottimizzazione in IMRT è la gestione via macchina di una serie di obiettivi intrinsecamente in contraddizione. Funzione di costo • Traduzione quantitativa delle caratteristiche del piano di trattamento in termini di – Obiettivi di dose (e.g. Dmin, Dmax) – Intenti del trattamento (e.g. controllare la dose vs. massimizzarla/minimizzarla) – Trattamenti precedenti – Informazioni biologico/funzionali – Informazioni geometriche (e.g. errori di set-up) – Parametri di erogazione – … The objective cost function 1. Evaluator 2. Modifier Quantifies a relevant feature of the plan A function f of the difference between the actual (E) and the desired (E0) value of the evaluator Dmean Dmin/Dmax DVHpoint C # segments treatment time plan robustness 50 45 40 35 30 25 20 15 10 5 0 0 … 5 10 E 15 20 3-step IMRT treatment planning 1. Fluence optimization Cost function minimization Up to 10^4 ‘beamlets’ Dose calc: fast but not very accurate 2. Segmentation Mechanical and dosimetrical MLC parameters are included Deterioration of the dose distribution 3. Final dose calculation No reoptimization Dose calculations: slower, but more accurate than in step 1. Aperture based treatment planning 1. Initial fluence optimization 2. Initial Segmentation 3. Tuning of a deliverable plan Taking benefit of degeneracy --> More efficient delivery Less computational burden = Possibility of using accurate dose algorithms What do we talk about when we talk about Patient specific QA ? Don’t forget the big picture Huq et al, IJROBP 2008 71(1) Supp. 2-D dosimetry + gamma analysis What is patient specific in this approach? The beam setting Which aspect of the treatment chain is evaluated? The head model In most cases, field by field analysis Some techniques require whole treatment verification (e.g. VMAT) Monte Carlo dose calculation (Tübingen) Main advantages 1)It solves the main dosimetric problem of IMRT dose calculation algorithms (source model) 2)Combined with hardware QA, it allows to come back to separate hw e sw QA, as in CRT In-vivo dosimetry(NKI) Planning CT (3D) EPID treatment image (2D) Planning dose (3D) EPID portal dose (2D imager plane) select mid-plane slice back-projection Planning dose (2D patient mid-plane) EPID dose (2D patient mid-plane) -evaluation Courtesy B. Mijnheer separate fields, 2D Dose-based corrections protocols? Planning CT + Planned dose CBCT + In vivo dosimetry Gamma analysis: dose errors Vs anatomy changes McDermott, R&O2008 Delivery Delivery Tecniche ad arco. Perché? • Aumento numero di campi >> aumento gradi di libertà • Migliore conformazione della dose • In caso di target concavi migliore risparmio degli OAR • Erogazione più veloce e riduzione movimenti intra-fraction • Molti parlano inoltre di migliore efficienza e riduzione MU, ma l’affermazione è discutibile From De Neve, in “Image-guided IMRT”, Springer Ed. 2007 Time/efficiency Treatment complexity vs monitor unit s=1-Dmax/Dpresc Bakai et al, PMB 2003 2-step IMRT treatment planning 1. Fluence optimization Cost function minimization Up to 10^4 ‘beamlets’ Dose calc: fast but not very accurate 2. Segmentation Mechanical and dosimetrical MLC parameters are included Deterioration of the dose distribution 3. Final dose calculation No reoptimization Dose calculations: slower, but more accurate than in step 1. Aperture based treatment planning 1. Initial fluence optimization 2. Initial Segmentation 3. Tuning of a deliverable plan Taking benefit of degeneracy --> More efficient delivery Less computational burden = Possibility of using accurate dose algorithms Author Palma IJROBP 2008 Mu SIMRT MU VMAT1 Mu VMAT2 789 492 454 Verbakel IJROBP 2009 1108 439 349 Cozzi R&O 2008 479 245 Vanetti R&O 2009 1126 463 Clivio R&O 2009 1531 468 Nicolini Rad On 2009 1398 Shaffer IJROBP 2009 (E-pub) Zhang IJROBP 2009 (E-Pub) Shaffer Clin Oncol 2009 MU CRT 295 Time SIMRT Time VMAT1 9.6 3.7 15 1.7 584 15 1.3 545 9.4 1.1 796 11.5 3 789 363 5.1 1.8 642 290 1819 949 9.6 3.7 Time Vmat2 2.6 Cone Beam Fan Beam Dose erogata in una singola/multipla rotazione del gantry Dose erogata grazie ad un fan beam che ruota continuamente in concomitanza alla traslazione del lettino Durante la rotazione la fluenza è modulata: - Variazione forma del campo(movimento lamelle MLC) - Variazione dei pesi dei campi (variazione di intensità) Tecniche Conformal Arc, AMOA, IMAT, VMAT Durante la rotazione la fluenza è modulata: - Variazione forma del campo - Variazione dei pesi dei beamlets Tomoterapia seriale/elicoidale IMRT (Angoli fissi) IMAT (Archi multipli) VMAT Single arc Tomoterapia Il gantry ruota per 360° creando 51 proiezioni Modulazione ottenuta variando il tempo di On/Off per ogni lamella Velocità di rotazione del gantry e tempo di trattamento dipendono da: dose di prescrizione, lunghezza target, dose rate Single/Few Arc(s) vs TOMO Prostata HT e IMAT: distribuzioni comparabili; IMAT: erogazione più veloce IMAT: riduzione dose integrale Canale Anale HT: migliore qualità piani; migliore copertura e omogeneità target; migliore risparmio genitali H&N HT: migliore qualità piani gradiente di dose più elevati Solid line: IMAT Interplay effects Bortfeld et al, PMB 2002 Could we solve it by adding a margin ? No (Not completely) Is it that bad ? It depends Intrafraction (‘interplay’) effects 1fr 30 fr 1fr sw s&s10 s&s20 Jiang et al, PMB 2003 30 fr New treatment modalities Radiation delivery technologies Heavier ions(?) HDR 'Conventional' XRT Tomotherapy IMXT Tomorrow's ideas 'Conventional' p+ Where would we like to use p+ ? 3DCRT IMPT TOMO % 35%D ose Gy 10% Dose 0% Dose In principle, for all patients In practice, whenever dose sparing at all dose levels could make the difference The Bragg peak Protons vs photons – Version 2 Protons vs photons – version 3 1.0 1.0 1.0 0.4 Fotoni 1.0 0.5 0.4 Protoni 0.2 0.5 0.5 1.0 0.5 0.2 1.0 0.2 0.2 Protons vs photons – version 4 X 3D modulation + Steep dose fall off More degrees of freedom p+ + = Protoni vs. Fotoni – caso pediatrico IMRT IMPT G. Fava - ATreP IMRT IMPT IMRT IMPT Sezione assiale con aree di basse dosi Dosimetric effects of geometrical uncertainties No errors 5mm setup (a) (b) 10mm setup (c) (d) 5mm setup 10 mm respiration M. Engelsman - MGH X rays protons Our choices PT center as the first module of a new public regional hospital Emphasis on availability and clinical usability No significant local development on PT technology Delivery mode: PBS only Interest in patient set up outside the treatment room First treatments: first half of 2013(?)