MULTIFUNCTIONAL CHIRAL POLYMERIC MATERIALS CONTAINING SIDE-CHAIN AZOCARBAZOLE CHROMOPHORES L. Angiolini, L. Giorgini, F. Mauriello Dipartimento di Chimica Industriale e dei Materiali, University of Bologna R. Bozio, T. Dainese, D. Pedron Dipartimento di Scienze Chimiche, University of Padova A. Golemme, R. Termine Dipartimento di Chimica, University of Calabria Synthesis of materials and characterization Photomodulation optical properties Photoconductive and photorefractive properties Features of the multifunctional polymer studied CH3 (CH2 POLYMERIC BACKBONE C) n C O Mn = 13400 O * CH C CH3 CHIRAL FUNCTIONALITY O Mw /Mn = 1.8 Tg = 147°C O PHOTOCONDUCTIVE & PHOTOREFRACTIVE FUNCTIONALITY N N N CN PHOTOCHROMIC FUNCTIONALITY Poly[(S)-MLECA] Td = 363°C High Tg and decomposition temperatures Carbazole Aromatic of azo-dyes 488 nm 633 nm 2,5 Absorbance 2,0 Trans 1,5 1,0 0,5 0,0 200 300 400 500 600 Wavelength (nm) Absorption in the visible: azo-dyes n *, * and CT el. trans. Pump at 488 nm Probe at 633 nm Cis Chiral conformation of one prevailing helical handedness 0,6 Amplified Chirality (S)-MLECA Poli[(S)-MLECA] 0,5 + 0,3 -1 -1 (L mol cm ) 0,4 CD spectra 0,2 0,1 0,0 -0,1 Excitonic splitting - -0,2 25000 UV-vis spectra -1 -1 (L mol cm ) 20000 15000 CHIRAL GROUP PHOTOREFRACTIVE GROUP AZO-AROMATIC CHROMOPHORE 10000 5000 0 300 400 (nm) 500 600 Potential use as chiroptical switches •Security from Forgery •Holographic Interferometry • Medical Application •Phase Conjugation •Optical Device •Pattern Recognition Holographic Data Storage Access time in milliseconds Photoconductive and photorefractive materials 104 102 CD ROM Floppy disks 101 Small Mag.Disks Large Mag. Disks 100 • Optical Amplification 10-1 • Holographic Data Storage 10-2 Holographic Memories 106 • 3-D Holovideo Nanolithography Magnetic Tape 103 Electroluminescents Diodes 107 108 109 1010 1011 1012 Capacity in bytes Integrals circuits MULTIFUNCTIONAL POLYMERS FOR PHOTONICS AND OPTOELECTRONICS Carbazole N Chiral group Azobenzene Synthetic approach Multifunctional Polymers Chiral group Carbazole Chiral monomer with carbazole + Azobenzene Chiral group MULTIFUNCTIONAL COPOLYMERS Chiral monomer with azobenzene Multifunctional monomer MULTIFUNCTIONAL OMOPOLYMERS Multifunctional copolymers synthetized CH3 (CH 2 CH3 CH3 (CH 2 C) x C O (CH2 C) 1-x C O O O C O C) 1-x C O O O C) x CH3 CH3 (CH2 O O N N O O O N N N N N N N N N N N poly[(S)-(+)-MECSI] poliy(S)-(+)-MECSI-co-(S)-(+)-MOSI](75/25) poli[yS)-(+)-MECSI-co-(S)-(+)-MOSI](50/50) poli[yS)-(+)-MECSI-co-(S)-(+)-MOSI](25/75) x=1 x=0.75 x=0.50 x=0.25 NO2 R x =1 x = 0.50 N O N CH3 (CH2 O O C) x C O O * N Multifunctional homopolymers synthetized N * CH CH3 C O O N N N poly[(S)-MCAPP-C] O poly[(S)-MCPS] n=1 poly[(S)-MCPS-co-(S)-MOSI] n=0.50 poly[(S)-MCPP] n=1 poly[(S)-MCPP-co-(S)-MAP-C] n=0.50 poly[(S)-MCPP-co-(S)-MAP-N] n=0.50 C )n C O N CH 3 ( CH2 N * N N O * O N Poly[(S)-(-)-MECP] Poliy(S)-(-)-MECP-co-(S)-MAP-N] O O * * * CH3 ( CH2 C )n ( CH2 C )1-n C O C O ( CH2 C )n ( CH2 C )1-n C O C O * * CH3 CH3 N N R poly[(S)-MLECA] CN Applications as Amorphous thin films obtained by spin-coating Thickness 100-400 nm <900 nm Photoinduced trans cis trans isomerization cycles trans trans N cis h N N N Ē rotational diffusion N N h N N STOP Reversible photoinduced orientation of azobenzene groups Linear Pol. Circular Pol. LP CP R. Hagen, T. Bieringer Adv. Mater 13, 1805 (2001) Typical experiment of photoinduced birefringence cycles n1 0,14 0,08 0,06 0,04 0,02 0 0,00 30 60 with LP light 0,10 Write and erase of optical information for OPTICAL STORAGE with CP light n2 Irradiation n 0,12 Irradiation 1 Birefringence 90 120 150 180 210 240 270 300 330 Time (s) L. Angiolini, R. Bozio, L. Giorgini, D. Pedron, G. Turco, A. Daurù, Chem. Eur. J., 8, 4241 (2002) L. Angiolini, T. Benelli, R. Bozio, A. Daurù, L. Giorgini, D. Pedron, E. Salatelli, Macromolecules, 39, 489-497 (2006) L. Angiolini, T. Benelli, R. Bozio, A. Daurù, L. Giorgini, D. Pedron, E. Salatelli, Eur. Polym. J, in press (2007) Photomodulation of birefringence on Poly[(S)-MLECA] Reversible write and erase of optical information for OPTICAL STORAGE Temporal stability of photoinduced signals Pump at 488 nm Ipump 100 mW/cm2 Probe at 633 nm Iprobe < 1 mW/cm2 CHIROPTICAL SWITCHES Native Irr. CP-L light Irr. CP-R light 0,15 Ellipticity [mdeg/nm] 0,10 Reversible inversion of the CD signal by irradiation with CP-L and/or CP-R light 0,05 0,00 -0,05 -0,10 -0,15 350 400 450 500 550 600 Wavelength [nm] poly[(S)-MAP-N] Tg = 208 C thin films 100 300 nm I 160 mW/cm2 x 60 s 650 Ellipticity at 470 nm (mdeg) -0,20 300 CP-R irradiation 150 100 Native 50 0 -50 -100 -150 CP-L irradiation 0 50 150 100 2 Fluence (J/cm ) L. Angiolini, R. Bozio, L. Giorgini, D. Pedron, G. Turco, A. Daurù, Chem. Eur. J., 8, 4241 (2002) L. Angiolini, R. Bozio, L. Giorgini, D. Pedron, Synth. Met., 138, 375-379 (2003) L. Angiolini, T. Benelli, R. Bozio, A. Daurù, L. Giorgini, D. Pedron, Synthetic Metals 139, 743 (2003) 200 Reversal of the coils or of the domains by irradiating with CP light !?? CHIROPTICAL SWITCHES CP-L CP-R CP-L Dipolar interactions Side-chain Chiral groups Azo-aromatic groups CP-R L. Angiolini, T. Benelli, L. Giorgini, A. Painelli, F. Terenziani, Chem. Eur. J. (2005) L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, Polymer, 46, 2424 (2005) L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, Polymer, 47, 1875–1885 (2006) Photomodulation of the chiroptical properties of Poly[(S)-MLECA] CHIROPTICAL SWITCHES Surface relief gratings (SRGs) photoinduced on Poly[(S)-MLECA] Irradiation of azo polymer films with an interference pattern for a period of time longer than that required for photoinduced orientation produces a modification of the film surface. Crossed Surface Relief Gratings SRGs, with 2 mm period, in the x-direction and 1 mm period, in the y-direction, SRGs with 1mm periods, in the x and y directions Laser Induced Supramolecular Helix (LISH) inscribed on Poly[(S)-MLECA] Unusual superhelix-like (LISH) patterns can be directly photofabricated on the surface of azo polymer films by a interference pattern obtained by EP-L (ellipticity = 0.4) and EP-R (ellipticity < 0.4) light. 5 mm Combination of the photoinduced chiral orientation and the photoinduced SRG formation. Helicoidal structures (LISH) superimposed to a SRG with a period of about 1mm Photoconductivity properties of Poly[(S)-MLECA] 2.3x10-13 ScmW-1 at 60V/mm ACKNOWLEDGEMENTS: Prof. Luigi Angiolini Dr. Tiziana Benelli Dr. Francesco Mauriello Dott. Elisabetta Salatelli Dott. Libero Damen Dott. Gianluca Perfetti University of Bologna Prof. Renato Bozio Prof. Danilo Pedron Dott. Tiziano Dainese Dott. Alessandro Daurù University of Padova Prof. Mauro Ghedini Prof. Attilio Golemme Dr. Roberto Termine University of Calabria Photomodulation of birefringence, chiroptical switches and SRGs Photoconductivity and Photorefractive properties Financial support by MIUR (FIRB 2001) and Consorzio INSTM is gratefully acknowledged The author dedicates this work to the memory of Professor Carlo Carlini PHOTORESPONSIVE PROPERTIES Photomodulation of linear birefringence and dichroism CONVENTIONAL MATERIALS OPTICAL STORAGE CHIRAL PHOTOCHROMIC POLYMERS OPTICAL STORAGE AND CHIROPTICAL SWITCHES Photomodulation of chiroptical properties CHIROPTICAL SWITCHES s/I (S cm W-1) Campo elettrico (V/mm) Poli[MECSI] 100% 1.2 e-14 60 Poli[MECP] 80% DPP 20% 8.0 e-11 40 Poli[MLECA] 100% 3.0 e-14 40 Poli[MECPS] 85% DPP 15% 2.0e-12 60 Polimero ACKNOWLEDGEMENTS: Dr. Tiziana Benelli Dr. Daniele Caretti Dr. Elisabetta Salatelli Dr. Delio Alfino Dr. Saverio Cazzoli Dr. Ada delle Donne Mr. Marco Toto Dr. Alessandro Daurù Dr. Giovanni Turco Mr. Andrea Barbiero University of Bologna University of Padova Financial support by MIUR (PRIN 2001) and Consorzio INSTM is gratefully acknowledged poly[(S)-MAP-C] (Tg = 192 C), heated at 200 C Ellipticity (mdegree) 800 native 5 min 10 min 15 min 20 min 25 min 30 min 40 min 50 min 60 min 75 min 100 min 115 min 130 min 600 400 200 0 -200 -400 -600 200 300 400 500 wavelenght (nm) 600 700 Heat The application of heat seems to amplify the overall chirality of the system Ellipticity (mdeg) 40 190 C 20 0 -20 CP-L -40 Heat 230 C CP-R -60 Absorbance poly[(S)-MAP-C] Tg = 192 C 2 Heat 1 0 250 350 450 550 Wavelength (nm) L. Angiolini et al., Synth. Met., 138, 375-379 (2003) 150 o 8 CP-R o o 6 and 10 CP-R o 4 CP-R o 2 CP-R 50 Chirality increases with the increase of the tot. fluence 0 o 1 CP-L o 3 CP-L o 5 CP-L o o 7 and 9 CP-L -50 -100 -150 250 Native 300 350 400 450 500 Wavelegth [nm] poly[(S)-MAP-C] 184 nm I 200 mW/cm2 x 180 s 1th - 6th I 100 mW/cm2 x 180 s 7th - 8th I 50 mW/cm2 x 180 s 9th - 10th 550 600 650 Ellipticity at 470 nm (mdeg) Ellipticity [mdeg] 100 CP-R irradiation 150 100 Native 50 0 -50 -100 CP-L irradiation -150 0 50 100 150 200 2 L. Angiolini et al., Synth. Met., (2003) in press Fluence (J/cm ) 250 300 150 o 8 CP-R o o 6 and 10 CP-R o 4 CP-R o 2 CP-R Ellipticity [mdeg] 100 50 0 o 1 CP-L o 3 CP-L o 5 CP-L o o 7 and 9 CP-L -50 Native -100 -150 250 300 350 400 450 500 550 600 poly[(S)-MAP-C] 184 nm I 200 mW/cm2 x 180 s 1th - 6th I 100 mW/cm2 x 180 s 7th - 8th I 50 mW/cm2 x 180 s 9th - 10th 650 Wavelegth [nm] o 9 CP-R o 7 CP-R o 5 CP-R o 3 CP-R o 1 CP-R Ellipticity [mdeg/nm] 0,6 0,4 Native 0,2 0,0 poly[(R)-MAP-C] 210 nm I 100 mW/cm2 x 400 s 1th - 10th -0,2 o 2 CP-L o 4 CP-L o 6 CP-L o 8 CP-L o 10 CP-L -0,4 -0,6 -0,8 300 400 500 Wavelegth [nm] 600 Synthesis of multifunctional monomers OH OH N N + N2+ CN N N HECA CH 3 CH 2 CN CH3 C CH2 C C O C O O O * CH CH 3 * CH CH3 C O C O O OH DPTS DIPC Biphasic medium H2O/CH2Cl2 O CH3(CH2)10CH2O N N N CN (S)-MLECA O S ONa 150 o 8 CP-R 50 Photoinduced aggregation? 0 -50 Native -100 o 9 CP-L -150 250 300 350 400 450 500 550 600 650 Wavelength [nm] Native After 10 irr. CP-L/CP-R 1,6 1,2 Absorbance Ellipticity [mdeg] 100 Modification in shape and intensity of the CD and abs. spectra 0,8 CP-L 0,4 0,0 200 300 400 500 Wavelegth [nm] 600 700 CP-R Temporal and thermal stability of photoinduced CD signals poly[(S)-MAP-C] 170 nm I 400 mW/cm2 x 180 s Native Irr. CP-L After heating After 1 year Ellipticity (mdeg) 50 0 CP-L CP-R -50 300 400 500 Wavelength (nm) Temporal and thermal stability L. Angiolini et al., Synth. Met., in press (2003) 150 o 8 CP-R o o 6 and 10 CP-R o 4 CP-R o 2 CP-R 50 CHIROPTICAL SWITCHES 0 o 1 CP-L o 3 CP-L o 5 CP-L o o 7 and 9 CP-L -50 -100 -150 250 Native 300 350 400 450 500 550 600 650 CP-R irradiation Wavelegth [nm] poly[(S)-MAP-N-co-DR1M] 50/50 Film thin 290 nm I 50 mW/cm2 x 180 s 1th - 3th I 100 mW/cm2 x 180 s 4h - 7th I 200 mW/cm2 x 180 s 8th - 10th Ellipticity at 470 nm (mdeg) Ellipticity [mdeg] 100 150 100 Native 50 0 -50 -100 -150 CP-L irradiation 0 50 100 150 2 Fluence (J/cm ) 200 M. Ivanov, et al., J. Mod. Opt. 2000, 47, 861. After ordering with LP light LC smectic-A phase G. Iftime, et al., J. Am. Chem. Soc. 2000, 122, 12646. The properties of the materials change by using different co-monomers CH3 ( CH2 poly[(S)-MAP-N] 0,25 poly[(S)-MAP-N-co-DR1M] 75/25 B C C 0,10 0,05 D A Birefringence, n 0,15 ) C C O C O O O 1-x C N B 0,15 B N B 0,10 D D D 0,05 A N A 0,00 0,00 60 x ( CH2 * C 0,20 30 CH3 ) 0,25 0,20 Birefringence, n H C A 90 120 150 180 210 240 270 300 Time (sec) 0 N N N NO2 NO2 200 400 600 800 1000 1200 1400 1600 Time (sec) 0,25 0,25 poly[(S)-MAP-N-co-DR1M] 50/50 0,15 B 0,10 B C B C C BC 0,05 D 0,00 A A 0 D 50 D D B 0,10 B C B C 0,05 0 A A A 100 150 200 250 300 350 400 50 C D D D DR1M poly[(S)-MAP-N] poly[(S)-MAP-N-co-DR1M]75/25 poly[(S)-MAP-N-co-DR1M]50/50 poly[(S)-MAP-N-co-DR1M]25/75 poy[(S)-MAP-N-co-DR1M]10/90 poly[DR1M] 0,15 0,00 A A (S)-MAP-N poly[(S)-MAP-N-co-DR1M] 25/75 0,20 Birefringence, n Birefringence, n 0,20 x=1 x=0.75 x=0.50 x=0.25 x=0.10 x=0 100 150 200 250 300 350 400 Time (sec) Time (sec) 0,25 0,25 poly[DR1M] 0,10 B C 0,05 B 0,15 C 0,10 0,05 D 20 0,15 poly[DR1M] 0,10 0,00 A 0 poly[(S)-MAP-N] A D 0,00 Birefringence, n 0,15 0,20 0,20 Birefringence, n Birefringence, n 0,20 0,25 poly[(S)-MAP-N-co-DR1M] 10/90 40 60 80 100 120 140 160 180 Time (sec) 30 60 90 120 150 180 210 240 270 300 Time (sec) 0,05 0,0 0,2 0,4 0,6 0,8 Mole fraction of (S)-MAP-N units 1,0 Materiali fotorifrattivi Effetto fotorifrattivo DEFINIZIONE: L’effetto fotorifrattivo (PRe) si riferisce alla modulazione spaziale dell’indice di rifrazione generato da un meccanismo specifico: la ridistribuzione fotoindotta di carica in un materiale nel quale l’indice di rifrazione dipende dal campo elettrico applicato. I processi fisici legati al meccanismo fotorifrattivo sono: 1.Assorbimento della radiazione luminosa con generazione di cariche 2.Trasporto delle cariche 3.Intrappolamento delle cariche 4.Generazione di un campo elettrico interno 5.Riorientazione molecolare interna con variazione dell’indice di rifrazione Materiali fotorifrattivi Effetto fotorifrattivo Molecole organiche coinvolte nel processo Densità di carica ilibera Trasporto carica Densità di carica intrappolata Intensità luce Generazione carica Intrappolamento carica Campo spaziale di carica: indice di rifrazione di carica n Indice Modulazione Elettro-ottica Photorefractive material = Photoconducting material +NLO chromophore Ioni Immobili Hole mobili Hole Intrappolati Scelta gruppo fotoconduttore Carbazolo Il gruppo carbazolico forma relativamente cationi radicalici stabili (holes) Il carbazolo è un intermedio relativamente economico. Differenti sostituenti possono essere facilmente introdotti nell’anello carbazoico. Materiali contenenti i gruppi carbazolici sono caratterizzati da una elevata stabilità termica e fotochimica Il gruppo carbazolico permette una maggiore coniugazione lungo la catena laterale Spettroscopia 1H-NMR Omopolimero poli[(S)-MLECA] d (S)-MLECA b b a CH3 CH2 C h h g g ** C O c O H C * CH3 4 8,1,6 5,2 e,f a c d a C O O poli[(S)-MLECA] e f 8 7 N 1 6 5 4 (S)-MLECA Scomparsa del segnale dei protoni del CH2 metacrilico 2 3 N N g h CN b d Misure di dicroismo circolare stato solido 6 SOLUZIONE Ellipticity (mdegree) 4 STATO SOLIDO 2 + 0 - couplet eccitonico Conservazione ordinamento cromofori 2,5 Absorbance 2,0 1,5 Potenziali swithes chiroottici 1,0 0,5 0,0 200 300 400 Wavelength (nm) 500 600 Misure di fotoconduzione Risultati Preliminari CH3 C )n C O CH3 O N N -1 * O -12 2,0x10 -12 1,5x10 -12 1,0x10 -12 BO 08 zona 4 15 settembre 2006 ( CH2 polimero 4 85% DPP 15% C O O * O 5,0x10 C )n N O = 533 nm -13 0 -11 7,0x10 -11 6,0x10 -11 5,0x10 -11 4,0x10 -11 3,0x10 -11 2,0x10 -11 1,0x10 -11 MECP 80% DDP 20% N 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Electric Field (V/mm) Poly [(S)-MECPS] = 533 nm -1 = 386 cm 0,0 -1 = 118 cm 0,0 -1 2,5x10 sph/I (ScmW ) O 8,0x10 sph/I (ScmW ) ( CH2 Poly [(S)-(+)-MECP] PROPRIETA’ FOTOCONDUTTIVE 2 ordini di grandezza maggiore 0 5 10 15 20 25 30 35 Electric Field (V/mm) 40 45