Accademia delle Scienze, 13 Giugno 2007 Teoria dell’instabilita’ idrodinamica di OrrSommerfeld a cent’anni dalla sua prima formulazione Daniela Tordella Politecnico di Torino 13 June 2007 Teoria dell'instabilità idrodinamica 1 13 June 2007 Teoria dell'instabilità idrodinamica 2 13 June 2007 Teoria dell'instabilità idrodinamica 3 13 June 2007 Teoria dell'instabilità idrodinamica 4 Orr William M’Fadden Arnold Sommerfeld Mathematician Physicist 1866 – 1934 1888 – 1951 Qeen’s Univeristy, Belfast University of Gottingen University College, Dublin Aachen University 13 June 2007 University of Munich 5 Teoria dell'instabilità idrodinamica 13 June 2007 Teoria dell'instabilità idrodinamica 6 13 June 2007 Teoria dell'instabilità idrodinamica 7 Flusso base Dinamica non lineare Bassi numeri di Reynolds Fluido reale in tutto il dominio --- no decadimento esponenziale Raccordo tra flussi interni ed esterni: vorticita’, gradiente di pressione, velocita’ di entrainment 13 June 2007 Teoria dell'instabilità idrodinamica 8 13 June 2007 Teoria dell'instabilità idrodinamica 9 13 June 2007 Teoria dell'instabilità idrodinamica 10 13 June 2007 Teoria dell'instabilità idrodinamica 11 13 June 2007 Teoria dell'instabilità idrodinamica 12 0(k0, s0), r0(k0, s0). 13 June 2007 R = 35, x/D = 4. Teoria dell'instabilità idrodinamica 13 Frequency. Comparison between present solution (accuracy Δω = 0.05), Zebib's numerical study (1987), Pier’s direct numerical simulations (2002), Williamson's experimental results (1988) . 13 June 2007 Teoria dell'instabilità idrodinamica 14 Non-modal theory: the initial-value problem disturbance velocity disturbance vorticity 13 June 2007 Teoria dell'instabilità idrodinamica 15 Initial and boundary conditions Initial disturbances are periodic and bounded in the free stream: asymmetric or symmetric Velocity field bounded in the free stream energy is finite. 13 June 2007 Teoria dell'instabilità idrodinamica perturbation kinetic 16 β0=1, Φ=0, y0=0. Present results (triangles: symmetric perturbation, circles: asymmetric perturbation) and normal mode analysis by Tordella, Scarsoglio and Belan, 2006 (solid lines). α=αr(x0) + iαi(x0) (where αr=k) is the most unstable wavenumber in any section of the near-parallel wake (dominant saddle point in the local dispersion relation). 13 June 2007 Teoria dell'instabilità idrodinamica 17 r=0.0826 r=-0.0168 r=0.0038 (a)-(b): R=100, y0=0, x0=9, k=1.7, αi =-0.05, β0=1, symmetric initial condition, (a) Φ=π/8, (b) Φ=(3/8)π. (c): R=100, y0=0, x0=11, k=0.6, αi=0.02, β0=1, asymmetric initial condition, Φ=π/4. where 13 June 2007 and Teoria dell'instabilità idrodinamica 18 Publications A synthetic perturbative hypothesis for the multiscale analysis of the convective wake instability - D. Tordella, S. Scarsoglio and M. Belan - Phys. Fluids, Vol. 18, No. 5 - (2006) 22nd IFIP TC 7 Conference on System Modeling and Optimization - Analysis of the convective instability of the two-dimensional wake (S. Scarsoglio, D. Tordella, M. Belan) - 18/22 luglio 2005 – Torino 6th Euromech Fluid Mechanics Conference (EFMC6) - A synthetic perturbative hypothesis for multiscale analysis of bluff-body wake instability (D.Tordella, S. Scarsoglio, M. Belan) - June 26-30, 2006 - Stockholm, Sweden 59th Annual Meeting Division of Fluid Dynamics (APS-DFD) - Initial-value problem for the two-dimensional growing wake (S. Scarsoglio, D.Tordella and W. O. Criminale) – November 19-21, 2006 - Tampa, Florida 11th Advanced European Turbulence Conference - Temporal dynamics of small perturbations for a two-dimensional growing wake (S. Scarsoglio, D.Tordella and W. O. Criminale) - June 25-28, 2007 - Porto, Portugal (submitted) Belan, M; Tordella, D Convective instability in wake intermediate asymptotics JOURNAL OF FLUID MECHANICS, 552 : 127-136 APR 10 2006. Tordella, D; Belan, M On the domain of validity of the near-parallel combined stability analysis for the 2D intermediate and far bluff body wake ZAMM, 85 (1): 51-65 JAN 2005 Tordella, D; Belan, M A new matched asymptotic expansion for the intermediate and far flow behind a finite body PHYSICS OF FLUIDS, 15 (7): 1897-1906 JUL 2003 Belan, M; Tordella, D Asymptotic expansions for two dimensional symmetrical Laminar wakes ZAMM, 82 (4): 219-234 2002 13 June 2007 Teoria dell'instabilità idrodinamica 20 Normal mode theory Base flow is excited with small oscillations. Perturbed system is described by Navier-Stokes model u*(x,y,t) = U(x,y) + u(x,y,t) v*(x,y,t) = V(x,y) + v(x,y,t) p*(x,y,t) = P0 + p(x,y,t) The linearized perturbative equation in term of stream function is Normal mode hypothesis Perturbation is considered as sum of normal modes, which can be treated separately since the system is linear. complex eigenfunction, 13 June 2007 Teoria dell'instabilità idrodinamica 21 Physical problem Steady, incompressible and viscous base flow described by continuity and Navier-Stokes equations with dimensionless quantities U(x,y), V(x,y), P(x,y) and cost R =UcD/ Boundary conditions: symmetry to x, uniformity at infinity and field information in the intermediate wake. The physical domain is divided into two regions both described by NavierStokes model. 13 June 2007 Teoria dell'instabilità idrodinamica 22 Inner flow -> Outer flow -> Physical quantities involved in matching criteria are the pressure longitudinal gradient, the vorticity and transverse velocity. The composite expansion, fcn = fin + fon – (fon)in, is continuous and differentiable over the whole domain (Belan & Tordella, 2002; Tordella & Belan, 2003). 13 June 2007 Teoria dell'instabilità idrodinamica 23 R = 60 Normal mode analysis Base flow: inner expansion (both longitudinal and transversal velocity components) up to the third order. Initial-value problem Base flow: inner expansion (only the longitudinal velocity component) up to the second order (x parameter). 13 June 2007 Teoria dell'instabilità idrodinamica 24 Non-modal theory: the initial-value problem Linear, three-dimensional perturbative equations (non dimensional quantities with respect to the base flow and spatial scales); Steady, incompressible and viscous base flow; Base flow: 2D asymptotic Navier-Stokes expansion (Belan & Tordella, 2003) parametric in x disturbance velocity disturbance vorticity 13 June 2007 Teoria dell'instabilità idrodinamica 25 Formulation Moving coordinate transform ξ = x – U0t (Criminale & Drazin, 1990), U0=Uy Fourier transform in ξ and z directions: αr = k cos(Φ) wavenumber in ξ-direction γ = k sin(Φ) wavenumber in z-direction Φ = tan-1(γ/αr) angle of obliquity k = (αr2 + γ2)1/2 polar wavenumber 13 June 2007 Teoria dell'instabilità idrodinamica 26 Stability analysis through multiscale approach Slow spatial and temporal evolution of the system: x1 = x, t1 = x, = 1/R. Hypothesis: and are expansions in term of . By substituting in the linearized perturbative equation, one has (ODE dependent on ) + (ODE dependent on , ) + O (2) Order zero theory Homogeneous Orr-Sommerfeld equation (parametric in x) eigenfunctions and a discrete set of eigenvalues 0n First order theory Non homogeneous Orr-Sommerfeld equation (x parameter) 13 June 2007 Teoria dell'instabilità idrodinamica 27 13 June 2007 Teoria dell'instabilità idrodinamica 28 Transient dynamics … Total kinetic energy E and the kinetic energy density e of the perturbation are defined (Blossey et al., submitted 2006) as: The growth function G defined in terms of the normalized energy density can effectively measure the growth of the energy at time t, for a given initial condition at t = 0. For asymptotically stable cases: • if G>1 for some time t>0 algebraically unstable flow • if G=1 for all time algebraically neutral flow • if G<1 for all time algebraically stable flow 13 June 2007 Teoria dell'instabilità idrodinamica 29 … and asymptotic behavior of the perturbations Considering that the amplitude of the disturbance is proportional to the temporal growth rate r can be defined (Lasseigne et al., 1999) as , Computations to evaluate the long time asymptotics are made by integrating the equations forward in time beyond the transient until the growth rate r asymptotes to a constant value (for example dr/dt < ε ~ 10-4). The angular frequency f can be defined by taking the phase of the complex wave at a fixed transversal station and then considering its time derivative (Whitham, 1974) 13 June 2007 Teoria dell'instabilità idrodinamica 30 (a)-(b): R=100, y0=0, k=1.2, αi=-0.1, β0=1, x0=10.15, symmetric initial condition, Φ=0, π/8, π/4, (3/8)π, π/2. (c)-(d): R=50, y0=0, k=0.9, αi=0.15, Φ=0, x0=14, asymmetric initial condition, β0=1, 3, 5, 7. 13 June 2007 Teoria dell'instabilità idrodinamica 31 (a)-(b): R=100, y0=0, αi =-0.01, β0=1, Φ=π/2, x0=7.40, symmetric initial condition, k=0.5, 1, 1.5, 2, 2.5. (c)-(d): R=50, y0=0, k=0.3, β0=1, Φ=0, x0=5.20, symmetric initial condition, αi =-0.1, 0, 0.1. 13 June 2007 Teoria dell'instabilità idrodinamica 32 (a)-(b): R=50, k=1.8, αi =0.05, β0=1, Φ=π/2, x0=7, asymmetric initial condition, y0=0, 2, 4, 6. (c)-(d): R=100, k=1.2, αi =-0.01, β0=1, Φ=π/8, x0=12, symmetric initial condition, y0=0, 2, 4, 6. 13 June 2007 Teoria dell'instabilità idrodinamica 33 Conclusions Normal mode theory • • Accurate analytical description of the base flow; Non-parallel effects, multiple spatial and temporal scales; Synthetic perturbative hypothesis (saddle point sequence); Good agreement with numerical and experimental results; Ordinary differential equations; No information on the early time history of the perturbation; Two-dimensional disturbances 13 June 2007 Initial-value problem • • Early transient and asymptotic behavior of the disturbance; Three-dimensional (symmetrical and asymmetrical) arbitrary initial disturbances imposed for different configurations; Good agreement with normal mode theory; Simplified description of the spatial evolution of the system (base flow parametric in x); Partial differential equations in time and space Teoria dell'instabilità idrodinamica 34