Modelling cell-extracellular matrix interactions Luigi Preziosi [email protected] calvino.polito.it/~preziosi Tumours as multicomponent tissues Dipartimento di di Matematica Matematica Dipartimento (degenerate parabolic) Mechanics in Multiphase Models Mechanical effects in: Growth Stress Interaction force (P. Friedl, K. Wolf) http://jcb.rupress.org/cgi/content/full/jcb.200209006/DC1 Dipartimento di Matematica Cell-ECM interaction • Baumgartner et al. PNAS 97 (2000) Dipartimento di Matematica Dipartimento di Matematica Human Brain Tumor 35 pN Sun et al. Biophys J. 89 (2005) Modelling the interaction between cells and ECM - if cells are not pulled strong enough they stick to the ECM - otherwise they move relative to the ECM mcm Darcy's-type law scm vrel • L.P. & A. Tosin, J. Math. Biol. 58, 625-656, (2009) Dipartimento di Matematica Modelling the interaction between cells and ECM - if cells are not pulled strong enough they they stick to the ECM - otherwise they move relative to the ECM Dipartimento di Matematica Modelling the interaction between cells and ECM G. Vitale & L.P., M3AS, (2010) Modelling the interaction between cells and ECM Contribution due to porosity and tortuosity (in 3D) Contribution due to adhesion Dipartimento di Matematica Modelling the adhesive contribution Evolution equation In the limit: bond age << travel time Breaking length << cell diameter Dipartimento di Matematica Modelling the adhesive contribution If z z0 F If z z0 F0 F Dipartimento di Matematica Modelling the adhesive contribution z mD+mad mad Fm FM F Dipartimento di Matematica Modelling the interaction between cells and ECM Some concluding remarks Different clones have different thresholds Different invasiveness Adhesion depends on the amount of ECM, moves slows down stops Modelling the interaction between cells and ECM Volume ratio Interfacial force Dipartimento di Matematica Cellular Potts Model Dipartimento di Matematica Sub-Cellular Components in CPM M. Scianna M. Scianna & L.P., Multiscale Model. Simul. (2012) Dipartimento di Matematica Moving cell morphology with CPM Dipartimento di Matematica Effect of adhesion in 2D Palecek et al., Nature 385, 537-540 (1997) Effect of pore size M. Scianna, L.P., & K. Wolf, Biosci. Engng. (2012) Effect of deformability Varying fiber elasticity Varying nucleus elasticity Direct and Inverse Problem Dipartimento di Matematica Dipartimento di Matematica Dipartimento di Matematica Dipartimento di Matematica Cell Traction V. Peschetola, V. Laurent, A. Duperray, L. Preziosi, D. Ambrosi, C. Verdier, Comp. Methods Biomech. Biomed. Engng. 14, 159-160 (2011). time Dipartimento di Matematica Traction on a stiff gel Ambrosi, Peschetola,Verdier SIAM J. Appl. Math, (2006) T24 cancer cells Dipartimento di Matematica Traction on softer gel T24 cancer cells Conclusions • minor traction ability than fibroblasts • larger forces on stiffer gels Dipartimento di Matematica Traction in 3D :f→u G. Vitale, D. Ambrosi, L.P., J. Math. Anal. Appl. 395, 788-801 (2012). Inverse Problems 28, 095013 (2012) Penalty function for the minimization problem Self-adjoint problem Dipartimento di Matematica Traction in 3D Dipartimento di Matematica A. Chauviere C. Verdier S. Astanin C. Giverso M. Scianna D. Ambrosi A. Tosin G. Vitale V. Peschetola