Corso di “Leggi costitutive dei geomateriali” Dottorato di Ricerca in Ingegneria Geotecnica Fracture mechanics approach to the study of failure in rock Claudio Scavia, Marta Castelli Politecnico di Torino Dipartimento di Ingegneria Strutturale e Geotecnica Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Index Introduction Basic concepts of Linear Elastic Fracture Mechanics Propagation criteria Non linear Fracture Mechanics Numerical modelling of cracked rock structures The Displacement Discontinuity Method Numerical simulation of experimental results Application to slope stability 2 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Introduction Since Coulomb (1776) the problem of failure in natural and manmade material have been approached on the basis of the traditional concept of Material strength This approach cannot explain some disastrous brittle failures and can be (depending on the scale) a great oversimplification of the crack initiation process Schenectady ship (1943) Tay bridge (Scotland, 1898) 3 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Introduction The main cause of fracture initiation is the presence of defects in the material, which concentrate the stress at their tips Large natural defects (faults, joints…) exist in rock masses Example: progressive failure in slopes Fracture Mechanics makes it possible to take such phenomenon into account through a study of the triggering and propagation of cracks starting from natural defects or discontinuities 4 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Introduction Main steps in Fracture Mechanics Analysis of the state of stress Evaluation of stress concentration Choice of a propagation criterion Definition of a methodology for the simulation of crack propagation stable propagation unstable propagation 5 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Modes of failure in rocks At the scale of the laboratory Direct tension Indirect tension 1 1 Axial splitting 1 Shear band 1 3 6 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Modes of failure in rocks At the scale of the rock mass Direct tension Indirect tension Shear 7 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Index Introduction Basic concepts of Linear Elastic Fracture Mechanics Propagation criteria Non linear Fracture Mechanics Numerical modelling of cracked rock structures The Displacement Discontinuity Method Numerical simulation of experimental results Application to slope stability 8 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Linear Elastic Fracture Mechanics Elastic behaviour of the material Inelastic behaviour of crack surfaces Determination of stress concentration at the crack tip fracture energy stress intensity factor Definition of the conditions for crack to propagate, through energetic or stress intensity balances 9 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Stress concentration circular hole elliptical hole crack 2b 2b0 a a a σ max σ 1 2 b max 3 max = 3 max = f(a, b) r max r r10 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Energetic approach (Griffith, 1921) Condition for crack propagation dWe dWs da da a22 We E Ws 4ag elastic energy release rate surface energy 2gE a 2g = fracture energy Gc fracture energy is a material characteristic which accounts for the energy required to create the new surface area, and for any additional energy absorbed by the fracturing process, such as plastic work 11 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Tensional approach (Irwin, 1957) Crack propagation can be studied through the superposition of the effects of three independent load application modes (I) (II) (III) mode I opening - loads are orthogonal to the fracture plane mode II slip - loads are tangent to the fracture plane in the direction of maximum dimension mode III tear - loads are contained in the fracture plane and act perpendicularly to mode II 12 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Tensional approach The state of stress in plane conditions (modes I and II) at a point P close to the crack tip is given as: 1 3 2 r cos K I 1 sin K IIsin 2K II tan 2r 2 2 2 2 1 3 cos K Icos 2 K IIsin 2r 2 2 2 1 r cos K Isin K II 3cos 1 2r 2 13 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Tensional approach For =0 i.e. for a point at a distance r along the line of the crack: x K I y K I xy K II y x ûy r For relative displacements û between the crack faces at a small distance x from the crack tip: 1 2r 1 2r 1 2r ûx K I 4 x G1 2 ûy K II 4 x G1 2 14 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Tensional approach r stresses tend to infinity when r 0 the Stress Intensity Factors K quantify the effect of geometry, loads, and restraints on the magnitude of the stress field near the tip 15 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Meaning of the Stress Intensity Factors Example: crack of length 2a, located in a plate subjected to a uniform vertical tensile stress The vertical stress, y, around the crack tip is given by the theory of elasticity: y a 2r 2b0 a The specific boundary conditions of the problem affect the value of y through a constant term KI which is given by: K I a 1 KI y 2r G1 2 KI û y 4 x y r 16 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Meaning of the Stress Intensity Factors The value of K is representative of the stress field around the crack tip for known geometrical characteristics of the specimens, it is possible to determine the critical value of K (toughness of the material) that will trigger propagation A comparison between the experimental values of KC and the values computed at the tips of cracks makes it possible to establish whether or not they can propagate, provided that the behaviour of the rock material is assumed to be linear-elastic propagation criterion 17 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Index Introduction Basic concepts of Linear Elastic Fracture Mechanics Propagation criteria Non linear Fracture Mechanics Numerical modelling of cracked rock structures The Displacement Discontinuity Method Numerical simulation of experimental results Application to slope stability 18 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Propagation criteria open cracks: mode I propagation takes place in most brittle materials, and a Linear Elastic Fracture Mechanics approach is suitable for the simulation of the phenomenon, on the basis of the fracture toughness KIC (or fracture energy GIc) closed and compressed cracks: several mechanisms must be taken into account, and different criteria are to be chosen for the study of induced-tensile and shear propagation In some case it is necessary to resort to a non linear approach, depending on the extension of the zone of localized deformation 19 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Open cracks (Erdogan & Sih, 1963) cracks spread radially starting from their tips; the direction of propagation, defined by an angle 0, is perpendicular to the direction along which the maximum tensile stress, (0), is found; crack begins to spread when (0) reaches a critical value (0)C; By expressing (0) and (0)C as a function of the stress intensity factors, the propagation criterion can be written in this form: 0 0 3 2r K IC K eq cos K I cos K IIsin 0 2 2 2 2 where KIC is the material toughness 20 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Open cracks (Erdogan & Sih, 1963) r 0 cos 0 2 K Isin 0 K II 3cos 0 1 K I sin 0 K II 3 cos 0 1 0 For pure mode I: For pure mode II: K II 0 KI 0 K I sin 0 0 0 0 K II 3 cos 0 1 0 0 70.5 21 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Open cracks KI > 0 KII = 0 KI < 0 KII 0 KI < 0 KII = 0 KI = 0 KII 0 KI > 0 KII 0 22 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Closed cracks Induced-tensile propagation: Brittle phenomenon (mixed mode) The original crack is compressed, while the part that propagates is open and in a tensile stress field (Erdogan & Sih, 1963) KIC Shear propagation: (mode II) The original crack is compressed, and it propagates in compressive stress fields KIIC? 23 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Shear propagation criteria A controversial issue is whether or not it is possible to apply LEFM concepts to the analysis of shear failure Experimental evidence show that compressed cracks in brittle materials evolve along shear fracture planes only after a long process involving the formation of microcracks under tensile stresses, their propagation and coalescence in large-scale shear progressive failure 1 3 The propagation is accompanied by considerable energy dissipation due to friction The meaning of fracture toughness in mode II (KIIC) is still under discussion 24 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Fracture toughness: mode I Experimental determination Suggested methods (ISRM, 1988) Short rod (SR) Chevron bend (CB) 25 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Short rod P D W h t a0 a a1 D P load on specimen diameter of short rod specimen length of specimen depth of crack in notch flank chevron angle notch width chevron tip distance crack length maximum depth of chevron flanks t notch a0 a a1 24Pmax K IC 1.5 D W uncut rock or ligament D/2 26 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Chevron bend h P Support roller loading roller a a0 A notch S L a CMOD knife A Pmax K IC 1.5 D uncut rock or ligament D P A L S D CMOD h a0 a load on specimen projected ligament area specimen length distance between support points diameter of chevron bend specimen relative opening of knife edges depth of crack in notch flank chevron angle = 90° chevron tip distance crack length 27 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Chevron bend 28 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica When is a LEFM approach applicable? Extremely high stress values involved in the phenomenon of crack propagation: a zone of material exhibiting a non linear behaviour (process zone) always forms at the crack tips, where the actual evolution of stresses is bound to deviate from the theoretical elastic values only when this zone is small compared to the size of the structure, the actual evolution of stresses will still be governed by K and the Linear Elastic Fracture Mechanics procedure can be applied 29 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Index Introduction Basic concepts of Linear Elastic Fracture Mechanics Propagation criteria Non linear Fracture Mechanics Numerical modelling of cracked rock structures The Displacement Discontinuity Method Numerical simulation of experimental results Application to slope stability 30 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Non Linear Fracture Mechanics Elastic behaviour of the material Inelastic behaviour inside the process zone and on crack surfaces Stress distribution does not present any singularity at the crack tip stresses must be computed taking into account different constitutive models for intact material and the process zone Definition of the conditions for the propagation of the crack and the process zone on the basis of material strength 31 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Non linear Fracture Mechanics Process zone at the crack tip zone accompanying crack initiation and propagation in which inelastic material response is occurring The micro-structural process of breakdown near the crack tip can be interpreted by assuming that it gives rise to cohesive stresses, which oppose the action of applied loads 32 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Non Linear Fracture Mechanics Open cracks (tension): the Cohesive Crack Model (Dugdale, 1960; Barenblatt, 1962) stress free inelastic stress distribution elastic stress distribution t dc Visible crack true crack process zone 33 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Non Linear Fracture Mechanics Closed cracks (compression and shear): the Slip-Weakening Model (Palmer & Rice, 1973) real crack process zone G r n d real tip p r fictitious tip r Here, a relation is assumed between relative displacement d and shear stress A residual shear strength r occurs when d reaches a critical value d* d n A process zone is introduced at the crack tip, where the damage is concentrated = process zone extension d* d G = energy amount stored inside the process zone 34 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Index Introduction Basic concepts of Linear Elastic Fracture Mechanics Propagation criteria Non linear Fracture Mechanics Numerical modelling of cracked rock structures The Displacement Discontinuity Method Numerical simulation of experimental results Application to slope stability 35 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical modelling of cracked rock structures Analysis of the state of stress and simulation of the propagation Resort to numerical techniques for the analysis of cracked rock structures proves necessary because of the geometrical complexity of most application problems Finite Element Method (FEM) Needs a re-meshing at each crack propagation step Boundary Element Method (BEM) requires only the discretisation of the structure boundaries and hence it is suited to deal with problems characterised by evolving geometries 36 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical modelling of cracked rock structures Displacement Discontinuity Method (Crouch & Starfield, 1983) allows to simulate the crack as Displacement Discontinuity elements n Ds = us(s, 0-) - us (s, 0+) +Dn Dn = un(s, 0-) - un (s, 0+) +Ds s 2a 37 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica The Displacement Discontinuity Method computer code (N) BEMCOM bj (1) bi known tangential and normal stresses or displacements acting on the i-th element influence coefficients of Ds(j) and Dn(j) on stresses or displacements over the i-th element N N j1 j1 N N j1 j1 s i A ss i, j Ds j A sn i, j Dn j n i A ns i, j Ds j A nn i, j Dn j unknown displacement discontinuities in the tangential and normal directions, in the centre of the j-th element 38 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Open elements Tensile stress fields Dn < 0 (opening) s(i), n(i) = 0 Compressive stress fields Dn> 0 (closure) s(i), n(i) = 0 39 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Closed elements Compressive stress fields Dn = 0 s(i), n(i) 0 s sr = n·tan Ks Ds No Displacement Discontinuities in the normal direction A tangential Displacement Discontinuity occurs if and when the available frictional shear strength is mobilised 40 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Simulation of crack propagation open cracks (Scavia, 1995; Scavia et al., 1997) Erdogan & Sih’s propagation criterion, based on the Stress Intensity factors calculation at the tip of the crack closed cracks induced-tensile propagation: Erdogan & Sih’s criterion shear propagation: calculation of the stress field near the tip and its comparison with the Mohr Coulomb strength criterion The load is applied in step, and the possibility of crack propagation is evaluated at each step. If such possibility is verified, a new element is added at the crack tip Two kind of propagation may occur: stable propagation may develop only if the load is increased unstable propagation: develops without any load increment 41 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical implementation of the SWM Computer code BEMCOM (Allodi et al., 2002) tip element real crack non-cohesive process zone cohesive process zone 42 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Adopted slip-weakening laws c cp p r 0 dc* d Cohesion (c) d* 0 Friction angle () intact material (tip element): cp, p real crack: c = 0, = r d process zone: linear variation of c and as a function of dc* and d* 43 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Index Introduction Basic concepts of Linear Elastic Fracture Mechanics Propagation criteria Non linear Fracture Mechanics Numerical modelling of cracked rock structures The Displacement Discontinuity Method Numerical simulation of experimental results Application to slope stability 44 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical simulation of experimental results The computer code BEMCOM has been used to simulate some experimental results through a LEFM approach: Induced-tensile propagation in hard rock bridges (Castelli, 1998) Experimental work on concrete samples containing two open slits subjected to uni-axial compression Shear propagation in soft rocks (Scavia et al., 1997) Experimental work on Beaucaire marl samples subjected to uni-axial compression in plane-strain conditions (Tillard, 1992) 45 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Induced-tensile propagation (Castelli, 1998) Experimental work on concrete samples containing two open slits subjected to uni-axial compression Et50 (MPa) Es50 (MPa) t50 (-) s50 (-) C0 (MPa) T0 (MPa) K1C (MPa*m) c (MPa) p (°) 20800 17600 0.21 0.11 74 3.53 0.94 23.7 35.5 Characteristic of the material Geometry and load configuration 46 12 axial stress (MPa) Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Experimental results horizontal 10 longitudinal oblique longitudinal 8 6 onset of propagation (numerical simulation) 4 oblique 2 0 0 5000 10000 15000 horizontal strains (microstrain) Stress-strain diagram Strain directions 47 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Propagation trajectories Experimental Numerical 48 Experimental work on Beaucaire marl samples subjected to uniaxial compression in plane-strain conditions (Tillard, 1992) Axial load (KN) Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Shear propagation (Scavia et al., 1997) 2.5 2.0 3 1.5 4 5 6 7 8 9 10 11 12 2 1.0 0.5 1 0 0 1 2 3 4 axial strain (%) Axial load-axial strain diagram 5 c5c7 c5-c7 c7c8 c7-c8 measured displacements (stereo-photogrammetry) 49 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical simulation two initial notches, 2 mm long and inclined 28° to the vertical, are inserted at the upper corners of the specimen onset of propagation occurs at an axial applied stress equal to 0.9 MPa E (MPa) (-) c (MPa) p (°), intact material r (°), crack surfaces C0 (MPa) Sample height (mm) Sample width (mm) Sample thickness (mm) 81 0.35 0.33 28 20 1.10 120 60 35 b = 28° l = 2mm 50 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Propagation trajectories c5c7 c7c8 Experimental c5c7 c7c8 Numerical 51 The numerical model is unable to simulate the global response of a specimen under load (no energy dissipation in the elastic material) 2.5 2.0 3 1.5 4 5 6 7 Axial load (kN) Axial load (KN) Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Limit of a LEFM approach 8 9 10 11 12 2 1.0 0.5 1 0 0 1 2 3 axial strain (%) 4 5 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 0.4 0.8 1.2 1.6 2.0 Axial strain (%) experimental numerical 52 NLFM approach to shear propagation Biaxial compression tests in plane strain conditions (Marello, 2004) 1200 Axial load under displacement control No lateral confinement LB-01 LB-02 LB-04 Prismatic specimens of Beaucaire marl (two different samples) Specimen dimensions: 170 x 80 x 35 mm3 MB-09 MB-10 mm3 85 x 40 x 35 (LB-02, LB-04) MB-11 LB-01 LB-02 LB-04 MB-09 MB-10 MB-11 1000 axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Experimental results 800 600 400 200 0 0 1 4 3 2 global axial strain [%] 5 6 Photographs of the specimens during the tests in order to carry out a stereo-photogrammetric analysis (Desrues, 1995) 53 couple 1-2 axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Experimental results: test MB-11 900 2 600 3 shear deformations 4 300 5 6 1 0 0 1 2 3 4 5 global axial strain [%] "experimental" photographs 54 shear deformations 900 axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Experimental results: test MB-11 2 couple 2-3 3 600 4 300 5 6 1 0 0 1 2 3 4 5 global axial strain [%] "experimental" photographs 55 axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Experimental results: test MB-11 shear deformations 900 2 600 3 4 300 5 couple 3-4 6 1 0 0 1 2 3 4 5 global axial strain [%] "experimental" photographs 56 axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Experimental results: test MB-11 Displacement vectors 900 2 600 3 4 300 5 couple 5-6 6 1 0 0 1 2 3 4 5 global axial strain [%] "experimental" photographs 57 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Experimental results: test MB-11 The specimen at the end of the test 58 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical simulation (Allodi et al., 2002) l Uniform axial displacement to the upper surface of the specimen Initial notch with orientation =/4 + p/2, approximately equal to the initial orientation of the experimentally observed crack 170 mm Mechanical parameters: E = 45 MPa = 0.35 c = 0.27 MPa y 80 mm x d* = 2 mm dc* = 1 mm p = 28° r = 24° from the literature (Skempton 1964, Li 1987) 59 Stress-strain global behaviour axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical simulation: results 900 II 600 III 2 3 4 300 IV I 5 6 1 0 0 1 2 3 4 5 global axial strain [%] experimental results numerical simulation "experimental" photographs "numerical" photographs 60 a shear propagation evolves inside the specimen with the same orientation of the initial notch 900 pre-failure phase: displacements are 600 homogeneous all over the sample surface axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical simulation: results peak load: II III 2 the different stress level observed in points 4 and IV can be due to the values of d* and dc* chosen for the numerical simulation 3 4 300 IV I post-failure phase: the formation of a second band cannot be numerically simulated 5 6 1 0 1 of the 2 analysis: 3 4 end axial [%] the bandglobal reaches thestrain opposite side of the specimen and all the elements reach their residual strength 0 5 61 Numerical (II) uy axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Incremental displacements: points 2 and II 900 II 600 III 2 3 Experimental (2) 4 300 IV I 5 6 1 0 0 1 2 3 4 5 uy global axial strain [%] 62 Numerical (III) uy axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Incremental displacements: points 3 and III 900 II 600 III 2 3 4 300 IV I 5 Experimental (3) 6 1 0 0 1 2 3 global axial strain [%] 4 5 uy 63 Numerical (IV) axial stress [kPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Incremental displacements: points 4 e IV 900 II 600 III 3 4 300 IV I uy Experimental (4) 2 5 6 1 0 0 1 2 3 4 5 uy global axial strain [%] 64 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Index Introduction Basic concepts of Linear Elastic Fracture Mechanics Propagation criteria Non linear Fracture Mechanics Numerical modelling of cracked rock structures The Displacement Discontinuity Method Numerical simulation of experimental results Application to slope stability 65 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Application of the method to slope stability The BEMCOM numerical code has been applied to the study of the stability of rock slopes with non persistent natural discontinuities (Scavia,1995; Castelli, 1998). crack propagation inside the rock mass is simulated hard rocks soft rocks, hard soils failure surface stepped failure surface pre-existing discontinuity 66 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Example of application to soft rocks Back Analysis of the Northold instability (Great Britain) (Skempton, 1964; Duncan & Stark, 1986) 10 m high slope, with an inclination of 22°, excavated in London clay in 1903, reshaped in 1936 and collapsed in 1955; strength parameters determined through extensive laboratory tests and back analyses the position of the phreatic surface and portions of the sliding surface are known 67 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Cross-section of the slope observed portion of the actual slip surface (Skempton, 1964) 68 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Shear strength parameters Laboratory tests (Skempton, 1964) cp' = 15.3 kPa cr ' = 0 peak residual Back Analyses according to the Limit Equilibrium Method with circular sliding surface (Skempton, 1964) c' = 6.72 kPa p' = 20° r' = 16° ' = 18° Back Analyses according to the try and error procedure, based on the Limit Equilibrium Method (Duncan & Stark, 1986) c' = 0.95 kPa c' = 0.72 kPa ' = 24° ' = 25° circular surface non-circular surface 69 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica The numerical model Assumptions peak shear strength values for intact material residual shear strength values for the surface of the crack Failure process starting at the foot of the slope Failure taking place at the end of the excavation works in drained conditions LEFM approach 70 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica The Numerical model Geometrical and mechanical configuration The propagation process was triggered by a crack located at the foot of the slope, with length l=5m and inclination =5° excavation works were simulated through10 steps the strength parameters were taken to be same as the effective parameters determined experimentally by Skempton (1964): c’ = 15.30 kPa c’ = 0 ’ = 20° ’ = 16° intact material surface of the crack 71 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical failure surface before propagation after propagation Top of the slope Toe of the slope sliding surface 72 At the end of the excavation process The propagation will take place in the direction where R is maximum 10 m Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Mobilisation ratio (1/1R) max 73 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Computed relative displacements At the end of the excavation process Maximum relative displacement = 19.3 cm 10 m 25 m 74 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Example of application to hard rock slopes MATTSAND Back analysis of the rockfall occurred in October 1998 in Mattsand (CH) (Amatruda et al., 2004): a volume of about 300 m3, triggered from a steep gneiss slope, fell into a water reservoir and damaged a road 75 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Detaching zone Water reservoir Road 76 Discontinuity systems: T J1: (65°, 75°) S: (245°, 35°) J2 surface making up the failure 30° 35° m E 7.4 m J1 J2: (130°, 85°) laterally delimiting the falling mass 4.1 S D 2m J1 C 3m Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Geometry and structural configuration 75° 5.5 B m 35° A 77 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Geometry and structural configuration J1 S 78 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Localisation and extension of rock bridges 79 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Proposed failure mechanisms 30° 3 2 Consecutive toppling of three blocks, due to the tensile failure of rock bridges 1 W3 W2 35° W1 75° rock tooth 35° discontinuity J1 80 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Geomechanical Parameters Through laboratory and in-situ tests, the following geomechanical parameters (mean values) have been obtained for intact rock and discontinuities: Indirect tensile strength T0 (MPa) Toughness (MPam) Basic friction angle b (°) JRC (-) JCS (MPa) 9.2 0.56 33° 4.5 32 Peak friction angle on the scistosity surface (Barton, 1976) p JRC log10 JCS b 43 n 81 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical back analysis The toppling failure of blocks 2 and 3 is analysed using the numerical method, through the simulation of a tensile crack propagation into the rock bridges Block 1 is considered as failed, since it was not possible to survey any rock bridge on its surfaces Assumed mechanical and geometrical parameters Young modulus E (MPa) Poisson ratio peak friction angle p (°) Toughness (MPam) Length of rock bridges (m) Block 2 Block 3 25000 0.2 43° 0.34 1 0.6 82 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Geometrical configurations Elem 3 1 Elem Elem B s n A Block 2 Misure in m Block 3 DD open elements (edges) DD open elements DD closed elements 83 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical results: block 2 Initial configuration Final configuration (KI and KII 0) Configurazione indeformata Tip propagation 1 mm5 Propagazione degli apici Propagation takes Configurazione deformata place for: KIC = 0.34 MPam B Scala degli spostamenti Open crack propagation in mixed mode conditions A mm 84 Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Block 2: failure mechanism rock cliff toppling block rock bridge failure due to induced tensile crack propagation 85 tangential stress 0,10 0,30 0,50 0,70 Open crack 0,90 1,10 1,30 1,50 1,70 1,90 2,10 2,30 2,50 2,70 2,90 Stress [MPa] Corso di “Leggi costitutive dei geomateriali” – Novembre 2005 Dottorato di ricerca in Ingegneria Geotecnica Numerical results: block 2 1 0,5 0 -0,5 Closed crack -1 -1,5 Local coordinate [m] normal stress n 86