Lo splicing dell’RNA • definizione • importanza • predizione Ing Francesco Piva Gruppo di biologia computazionale e molecolare Dipartimento di Biochimica, Biologia e Genetica Università Politecnica delle Marche Edificio Scienze 3, Brecce Bianche, Ancona [email protected] These are synonymous words, are we sure ? . . . Ala Val Arg . . . GCA GTA CGA C C C G G G T T T AGA G 4 * 4 * 6 = 96 Three AAs specified by 96 synonymous words GCAGTACGA GCAGTACGC GCAGTACGG GCAGTACGT GCAGTAAGA GCAGTAAGG GCAGTCCGA GCAGTCCGC GCAGTCCGG GCAGTCCGT GCAGTCAGA GCAGTCAGG GCAGTGCGA GCAGTGCGC GCAGTGCGG GCAGTGCGT GCAGTGAGA GCAGTGAGG GCAGTTCGA GCAGTTCGC GCAGTTCGG GCAGTTCGT GCAGTTAGA GCAGTTAGG GCCGTACGA GCCGTACGC GCCGTACGG GCCGTACGT GCCGTAAGA GCCGTAAGG GCCGTCCGA GCCGTCCGC GCCGTCCGG GCCGTCCGT GCCGTCAGA GCCGTCAGG GCCGTGCGA GCCGTGCGC GCCGTGCGG GCCGTGCGT GCCGTGAGA GCCGTGAGG GCCGTTCGA GCCGTTCGC GCCGTTCGG GCCGTTCGT GCCGTTAGA GCCGTTAGG GCGGTACGA GCGGTACGC GCGGTACGG GCGGTACGT GCGGTAAGA GCGGTAAGG GCGGTCCGA GCGGTCCGC GCGGTCCGG GCGGTCCGT GCGGTCAGA GCGGTCAGG GCGGTGCGA GCGGTGCGC GCGGTGCGG GCGGTGCGT GCGGTGAGA GCGGTGAGG GCGGTTCGA GCGGTTCGC GCGGTTCGG GCGGTTCGT GCGGTTAGA GCGGTTAGG GCTGTACGA GCTGTACGC GCTGTACGG GCTGTACGT GCTGTAAGA GCTGTAAGG GCTGTCCGA GCTGTCCGC GCTGTCCGG GCTGTCCGT GCTGTCAGA GCTGTCAGG GCTGTGCGA GCTGTGCGC GCTGTGCGG GCTGTGCGT GCTGTGAGA GCTGTGAGG GCTGTTCGA GCTGTTCGC GCTGTTCGG GCTGTTCGT GCTGTTAGA GCTGTTAGG Genomic DNA ATGTAAACGTATATCGTGACAGTGGTCTGTTAGTATTCCTTTAGTCATGGTTT ATGTAAACTGGTCTGTTATCATGGTTT mRNA attggaaaccgaaacccgttggtcacctctgcaatagccctccctccctcacttctacaattttgtgacagtggtctt gttttctgcattctctgcttcacgtgcttgttttgttggagcgcgtttgcatgctgctttaaattctgaaatattaaa aaaatttcgaagtttttcagcacatgggatgggagttttgaatttcaattttttaaaaacatttttctgtgattagtg ccgtcgtggcacggctgttagccgcctatccggtttattcgatactttGTGAGTTTTTTGTAACTTTATGGTCGTCGA AATGGGAAAACTTGGCCACCAATATAAGTTTGGAAAACAATTTCCTAAAAATAAAATAATTGAACTTTTCCGATGAAT AAAAAAATCGATCAGATATTCTGGAAAAAAAATCGATAAATTAATCGATTTTCTTGGAAAATACATCGAAAAATTGAG AAAAATAGAAAAATGAATGTTTTTCGATTACCGATTTATTGATTTTTCGTGAAAACTGAGTTCAGATAATTTTAAAAG CAATGTTTTTCATTTTTCAAATCAGAATCACTATAGTTTTGAAAAATCAATAATTAATTTATTGATTTTTCAATATAA TTTTTTGGAAAAAATAGAAAAATCCCTTTCTAAAAGTTTTAAATTTCCAAGAAAAATTCATTTTCAAAATCACCAACG CGCTCTATAGAGTAGTCGATGAAAATCTCCGTTAAGGGTGCATGGGCAAAACGCGCTCGAACGACAATTGTTATTGTA TGTTTGGTCTTGCAACGAAAAGTTTGAAAAATTGAAAAAAAGTTGTGTCTGATACATTTTTTTTTGGCATTTTCTGCT ATTTTACACCAGAAAAAATTTAATAAACATAAAAAATCGAAATTTTTCAAGTTGGACAATTTTCAGtgagcatcttat ccatcctagttctcagttcaggacttgtgcacattcgtttagagccagatattcgcaaagccttttcaccggatgatt cagatgctggataGTAAGTGACTACTGACCTTGAAGCCTCCTTCCTCCACCAGTCAGAAATAACACGTTTTTTCGCAA TGTTTTTCTTTTTCTAATTCGATTTCCCTTTCTCCCTTTCTTATTGTGATTTGGTCAATGTTTGGTTGACTGGGAAGA AAATTGAATTTTTTTGGAATTCCACTTGAAGTTAAAAAACCCAAAATAAATATTTGATCAAAAATAAATAAGAAAAAA AAGAAAACTTTAAAGCAAATGAAAATTTCGTTCGTAACTATTTTGTTAATTTTTTTAAAACTCCTATTTTAAATATAT GCTTTTTGCGGAAATTTCTATAAATTTTTTTACATTTTTCAGtgaaacccgtgtctggctggaatactacggactcga catctatccggaacgagcattctgtatttttaccgccaagcgcgaaaattccagtattctccaggaaggcgcactggc agacGTAAGTTGATTCTCCGTCACGCCCACTTTTCTGGCGGGAATTTAAAAAATTTCAGatttatactgtggacaatc gactatcggcggcagttggctaccaagatggggatggacgaaaaaattgcgatccactctgcgacttgaacagcccct ttcacttgttagcgGTAGGTGGTGGTCTAGGGTGTCATTTTTCGATTTTTTCAATTATTCGATGTTTTTAGTGAAAAT CGAAAAATCTAAAAATTGAAAATCGAAAAATGAAAGAAACATTGTTTTTTGGGGACCAAACATCTTAATGAATTTAAC AACAGGGAAAACTGAACAGAAACCTGGACGGTCTTATCCCATTTATCTATATTCTTAAAATGAATGATGGAGAAAAAA GTTAAAATAAAAACATTATCAGCTTTTTGTAAGTTTTTCTCAAAAATTGTTCGATTTTTCGATTTTCTAAAAAGTCGA AAAACCGAAACCCTTGGTGGTGGTGGTGGTGGACTAGAAAACTCTTCAACGACCACATGGCAATTTTCAGaatttgac gcggagaaacaatggtaccacaagtgtattcacctatccggatatgccatatagcggactggatattttcctgggact tcacttgagtaatgcggattttggtaagattttttttgaaatgttaaatgaaaagttgaaaaatagtttttatgattt agccactttccagttaaaatttcatttttttaactataaaaagttctggaaaaatg Struttura tipica dei geni umani esoni introni esone1 introne1 GT S P L I C I N G esone2 AG introne2 GT esone3 AG eliminazione introni introne1 introne2 esone2 esone1 esone3 unione esoni esone1 esone2 esone3 Lo splicing avviene in tutto il trascritto, anche nelle zone non codificanti R = G, A Y = T, C Meccanismo di splicing estere alcool O R C ORI + HO RII + HO RI = O R C ORII due legami fosfoesterici U2AF si lega al tratto pirimidinico a valle del sito di ramificazione Arg-Ser arly snRNP U2 si lega al sito di ramificazione (richiesta idrolisi ATP) U2AF U2AF il 3’ss è tagliato e gli esoni vengono saldati insieme, il cappio verrà deramificato le prot SR connettono U2Af con snRNP U1 U2AF snRNP U4 è rilasciato (richiesta idrolisi ATP), snRNP U6 e U2 catalizzano la transesterificazione, snRNP U5 si lega al 3’ss, il 5’ ss è tagliato e si forma il cappio U2AF si legano insieme snRNP U5 si lega al 5’ss, snRNP U6 si lega a snRNP U2 snRNP U1 è rilasciato, snRNP U5 si sposta dall’esone all’introne, snRNP U6 si lega al 5’ss introne (5’ss) snRNP U1 Sm protein G16 C5 RBD: RNA binding domain snRNP U2 si appaiano con snRNA U6 Sm protein si appaia al sito di ramificazione U17 U5 Lo splicing è tessuto specifico Muscolo cardiaco 1 1 2 Muscolo uterino 2 3 5 3 1 4 3 4 5 5 Esempio di alternative splicing di un gene umano Alternative splicing tessuto specifico Tutti i modi di fare splicing alternativo Alcuni genomi virali subiscono splicing all’interno della cellula ospite equine infectious anemia virus (EIAV) AIM: mRNA structure pre mRNA sequence SPLICING PREDICTION TOOL attggaaaccgaaacccgttggtcacctctgcaatagccctccctccctcacttctacaattttgtgaca gtggtcttgttttctgcattctctgcttcacgtgcttgttttgttggagcgcgtttgcatgctgctttaa attctgaaatattaaaaaaatttcgaagtttttcagcacatgggatgggagttttgaatttcaatttttt aaaaacatttttctgtgattagtgccgtcgtggcacggctgttagccgcctatccggtttattcgatact ttGTGAGTTTTTTGTAACTTTATGGTCGTCGAAATGGGAAAACTTGGCCACCAATATAAGTTTGGAAAAC AATTTCCTAAAAATAAAATAATTGAACTTTTCCGATGAATAAAAAAATCGATCAGATATTCTGGAAAAAA AATCGATAAATTAATCGATTTTCTTGGAAAATACATCGAAAAATTGAGAAAAATAGAAAAATGAATGTTT TTCGATTACCGATTTATTGATTTTTCGTGAAAACTGAGTTCAGATAATTTTAAAAGCAATGTTTTTCATT TTTCAAATCAGAATCACTATAGTTTTGAAAAATCAATAATTAATTTATTGATTTTTCAATATAATTTTTT GGAAAAAATAGAAAAATCCCTTTCTAAAAGTTTTAAATTTCCAAGAAAAATTCATTTTCAAAATCACCAA CGCGCTCTATAGAGTAGTCGATGAAAATCTCCGTTAAGGGTGCATGGGCAAAACGCGCTCGAACGACAAT TGTTATTGTATGTTTGGTCTTGCAACGAAAAGTTTGAAAAATTGAAAAAAAGTTGTGTCTGATACATTTT TTTTTGGCATTTTCTGCTATTTTACACCAGAAAAAATTTAATAAACATAAAAAATCGAAATTTTTCAAGT TGGACAATTTTCAGtgagcatcttatccatcctagttctcagttcaggacttgtgcacattcgtttagag ccagatattcgcaaagccttttcaccggatgattcagatgctggataGTAAGTGACTACTGACCTTGAAG CCTCCTTCCTCCACCAGTCAGAAATAACACGTTTTTTCGCAATGTTTTTCTTTTTCTAATTCGATTTCCC TTTCTCCCTTTCTTATTGTGATTTGGTCAATGTTTGGTTGACTGGGAAGAAAATTGAATTTTTTTGGAAT TCCACTTGAAGTTAAAAAACCCAAAATAAATATTTGATCAAAAATAAATAAGAAAAAAAAGAAAACTTTA AAGCAAATGAAAATTTCGTTCGTAACTATTTTGTTAATTTTTTTAAAACTCCTATTTTAAATATATGCTT TTTGCGGAAATTTCTATAAATTTTTTTACATTTTTCAGtgaaacccgtgtctggctggaatactacggac tcgacatctatccggaacgagcattctgtatttttaccgccaagcgcgaaaattccagtattctccagga aggcgcactggcagacGTAAGTTGATTCTCCGTCACGCCCACTTTTCTGGCGGGAATTTAAAAAATTTCA Gatttatactgtggacaatcgactatcggcggcagttggctaccaagatggggatggacgaaaaaattgc gatccactctgcgacttgaacagcccctttcacttgttagcgGTAGGTGGTGGTCTAGGGTGTCATTTTT CGATTTTTTCAATTATTCGATGTTTTTAGTGAAAATCGAAAAATCTAAAAATTGAAAATCGAAAAATGAA AGAAACATTGTTTTTTGGGGACCAAACATCTTAATGAATTTAACAACAGGGAAAACTGAACAGAAACCTG GACGGTCTTATCCCATTTATCTATATTCTTAAAATGAATGATGGAGAAAAAAGTTAAAATAAAAACATTA TCAGCTTTTTGTAAGTTTTTCTCAAAAATTGTTCGATTTTTCGATTTTCTAAAAAGTCGAAAAACCGAAA CCCTTGGTGGTGGTGGTGGTGGACTAGAAAACTCTTCAACGACCACATGGCAATTTTCAGaatttgacgc ggagaaacaatggtaccacaagtgtattcacctatccggatatgccatatagcggactggatattttcct gggacttcacttgagtaatgcggattttggtaagattttttttgaaatgttaaatgaaaagttgaaaaat agtttttatgatttagccactttccagttaaaatttcatttttttaactataaaaagttctggaaaaatg aatttctAGgccgccgatcctaaaAGTgcaccatttcgcAGaAGTacGTacAGTttcccatctatccctA GTgGTcttGTtttctgcattctctgcttcacGTgcttGTtttGTtggAGcgcGTttgcatgctgctttaa attctgaaatattaaaaaaatttcgaAGTttttcAGcacatgggatgggAGTtttgaatttcaatttttt aaaaacatttttctGTgattAGTgccGTcGTggcacggctGTtAGccgcctatccgGTttattcgatact ttGTGAGTTTTTTGTAACTTTATGGTCGTCGAAATGGGAAAACTTGGCCACCAATATAAGTTTGGAAAAC AATTTCCTAAAAATAAAATAATTGAACTTTTCCGATGAATAAAAAAATCGATCAGATATTCTGGAAAAAA AATCGATAAATTAATCGATTTTCTTGGAAAATACATCGAAAAATTGAGAAAAATAGAAAAATGAATGTTT TTCGATTACCGATTTATTGATTTTTCGTGAAAACTGAGTTCAGATAATTTTAAAAGCAATGTTTTTCATT TTTCAAATCAGAATCACTATAGTTTTGAAAAATCAATAATTAATTTATTGATTTTTCAATATAATTTTTT GGAAAAAATAGAAAAATCCCTTTCTAAAAGTTTTAAATTTCCAAGAAAAATTCATTTTCAAAATCACCAA CGCGCTCTATAGAGTAGTCGATGAAAATCTCCGTTAAGGGTGCATGGGCAAAACGCGCTCGAACGACAAT TGTTATTGTATGTTTGGTCTTGCAACGAAAAGTTTGAAAAATTGAAAAAAAGTTGTGTCTGATACATTTT TTTTTGGCATTTTCTGCTATTTTACACCAGAAAAAATTTAATAAACATAAAAAATCGAAATTTTTCAAGT TGGACAATTTTCAGtgAGcatcttatccatcctAGTtctcAGTtcAGgacttGTgcacattcGTttAGAG ccAGatattcgcaaAGccttttcaccggatgattcAGatgctggatAGTAAGTGACTACTGACCTTGAAG CCTCCTTCCTCCACCAGTCAGAAATAACACGTTTTTTCGCAATGTTTTTCTTTTTCTAATTCGATTTCCC TTTCTCCCTTTCTTATTGTGATTTGGTCAATGTTTGGTTGACTGGGAAGAAAATTGAATTTTTTTGGAAT TCCACTTGAAGTTAAAAAACCCAAAATAAATATTTGATCAAAAATAAATAAGAAAAAAAAGAAAACTTTA AAGCAAATGAAAATTTCGTTCGTAACTATTTTGTTAATTTTTTTAAAACTCCTATTTTAAATATATGCTT TTTGCGGAAATTTCTATAAATTTTTTTACATTTTTCAGTgaaacccGTGTctggctggaatactacggac tcgacatctatccggaacgAGcattctGTatttttaccgccaAGcgcgaaaattccAGTattctccAGga AGgcgcactggcAGacGTAAGTTGATTCTCCGTCACGCCCACTTTTCTGGCGGGAATTTAAAAAATTTCA GatttatactGTggacaatcgactatcggcggcAGTtggctaccaAGatggggatggacgaaaaaattgc gatccactctgcgacttgaacAGcccctttcacttGTtAGcgGTAGGTGGTGGTCTAGGGTGTCATTTTT CGATTTTTTCAATTATTCGATGTTTTTAGTGAAAATCGAAAAATCTAAAAATTGAAAATCGAAAAATGAA AGAAACATTGTTTTTTGGGGACCAAACATCTTAATGAATTTAACAACAGGGAAAACTGAACAGAAACCTG GACGGTCTTATCCCATTTATCTATATTCTTAAAATGAATGATGGAGAAAAAAGTTAAAATAAAAACATTA TCAGCTTTTTGTAAGTTTTTCTCAAAAATTGTTCGATTTTTCGATTTTCTAAAAAGTCGAAAAACCGAAA CCCTTGGTGGTGGTGGTGGTGGACTAGAAAACTCTTCAACGACCACATGGCAATTTTCAGaatttgacgc ggAGaaacaatgGTaccacaAGTGTattcacctatccggatatgccatatAGcggactggatattttcct gggacttcacttgAGTaatgcggattttgGTaAGattttttttgaaatGTtaaatgaaaAGTtgaaaaat AGTttttatgatttAGccactttccAGTtaaaatttcatttttttaactataaaaAGTtctggaaaaatG Segnali per il riconoscimento degli introni Motivi conservati I segnali dei siti di splicing sono ben conservati tra le specie probabilmente la comparsa del meccanismo di splicing è molto antica aaggtaaaaa ttggtaaagc aacgtaaatt ctggtaacta agagtaagac ccggtaagca gaagtaagct aaggtaaggg atggtaagtc gcggtaagtt gaggtaatga agagtaattg atggtacata cgggtacctg atggtacgga acagtacgtc gaggtactct atggtagaga ggggtaggaa atggtaggct acagtaggtc caggtagtcc aaggtatagt atggtatcct tgggtatgag aaagtatgga caagtatgtc acggtattaa aaggtcaaag acagtcagta tgggtccgca agggtctctg aaggtgaacg ttggtgagaa aaggtgagca tcggtgagct actgtgaggg gtagtgagtc atggtgatga acggtgccta cctgtgcgta caggtgctga ctggtgggca ctcgtgggtg ttggtgtgcc aaggttaaaa ggggttagta aaggttccgt taggttggag caggtttcta Frequency CAGgtgagtg 5’splice sites CAGgtaagaa AAGgtaagaa CAGgtaagag CAGgtgaggg CAGgtgaggc CAGgtgagcc aaaaaaagaa gtaataagga accccaaggg cttcgaagga ttccaaaggc tatgaaaggt atctgaagtc cgtttaagct gttttaagga tgctgaagaa aacaacagtt caaaacagta cgtatcagta gccatcagaa tacagcagtt tgtaacagca aaccgcaggg atgctcagga ccccgcaggc ctacacagct gcactcaggt gtacccagtt tatctcagcc tgccgcagcc tttcgcagga catgacagaa ctggtcaggc gtcgacaggt tgggccaggt aactgcaggc atatgcagaa cattgcaggt cgctacaggg ctttccagta ggattcagga gttttcaggc tcctacaggg tgttgcagcc caccggagga aacattagac ccaactagca gcaaatagtg tccactagag ttgattagag atccctaggg ccccctagtc cttcgtagac gtgcatagct tctcatagcg tttcctaggt cgggctagca tctgatagaa aattttaggc atctctagag ccatatagca ctctgtagac gcctctagat gtctatagtg tcatctagcc tgttataggt Frequency tttttcagGT 3’splice sites ccctgcagGT ccccacagGT ttttttagGT ctctgcagGT tctttcagAT ctccccagGC 1 34 67 100 133 166 199 232 265 298 331 364 397 430 463 496 529 562 595 628 661 694 727 760 793 826 859 892 925 958 991 1024 1057 1090 1123 1156 1189 1222 1255 1288 1321 1354 1387 1420 1453 1486 1519 1552 1585 1618 1651 1684 1717 1750 1783 1816 1849 1882 1915 1948 Frequency exon length (nt) introns length (nt) 2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92 97 102 107 112 117 122 127 132 137 142 147 152 157 162 167 172 177 182 187 192 197 202 207 212 217 222 227 232 237 242 247 252 257 262 267 272 277 282 287 292 297 302 307 312 317 322 327 332 337 342 347 Frequency One point mutation at a time BRCA1 exon 18 100% 20% 17 18 19 80% 17 19 17 18 19 Binding of DAZAP1 and hnRNPA1/A2 to an Exonic Splicing Silencer in a Natural BRCA1 Exon 18 Mutant Goina E, Skoko N, Pagani F. Mol Cell Biol 2008; 28: 3850–3860 Two point mutations at a time BRCA1 exon 18 Complete exon 18 skipping Decreased efficiency Binding of DAZAP1 and hnRNPA1/A2 to an Exonic Splicing Silencer in a Natural BRCA1 Exon 18 Mutant Goina E, Skoko N, Pagani F. Mol Cell Biol 2008; 28: 3850–3860 Effect of variations in CFTR exon 9 pathological pathological 100 90 80 70 60 50 40 30 20 10 0 5’-ACAGTTGTTGGCGGTTG-3’ TACCACCC TTATT GGTTC AA CCGC G G T pathological % exon 9 inclusion WT A G T G A G T C T C G C A C A C A C C T T C A G T T C T WT 144A 145C 146A 147G 148T 149T150G 151T 153G 154G 155C 156G 157G ex9 + ex9 - Pagani, F., Buratti, E., Stuani, C., and Baralle, F. E. (2003) J Biol Chem Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A. R., and Baralle, F. E. (2003) J Biol Chem An additional exonic constraints: the splicing code The genetic code is degenerate, but it is not all rodustness . . . Ala Val Arg . . . GCA GTA CGA C C C G G G T T T AGA G 4 * 4 * 6 = 96 Three AAs specified by 96 synonymous words GCAGTACGA GCAGTACGC GCAGTACGG GCAGTACGT GCAGTAAGA GCAGTAAGG GCAGTCCGA GCAGTCCGC GCAGTCCGG GCAGTCCGT GCAGTCAGA GCAGTCAGG GCAGTGCGA GCAGTGCGC GCAGTGCGG GCAGTGCGT GCAGTGAGA GCAGTGAGG GCAGTTCGA GCAGTTCGC GCAGTTCGG GCAGTTCGT GCAGTTAGA GCAGTTAGG GCCGTACGA GCCGTACGC GCCGTACGG GCCGTACGT GCCGTAAGA GCCGTAAGG GCCGTCCGA GCCGTCCGC GCCGTCCGG GCCGTCCGT GCCGTCAGA GCCGTCAGG GCCGTGCGA GCCGTGCGC GCCGTGCGG GCCGTGCGT GCCGTGAGA GCCGTGAGG GCCGTTCGA GCCGTTCGC GCCGTTCGG GCCGTTCGT GCCGTTAGA GCCGTTAGG GCGGTACGA GCGGTACGC GCGGTACGG GCGGTACGT GCGGTAAGA GCGGTAAGG GCGGTCCGA GCGGTCCGC GCGGTCCGG GCGGTCCGT GCGGTCAGA GCGGTCAGG GCGGTGCGA GCGGTGCGC GCGGTGCGG GCGGTGCGT GCGGTGAGA GCGGTGAGG GCGGTTCGA GCGGTTCGC GCGGTTCGG GCGGTTCGT GCGGTTAGA GCGGTTAGG GCTGTACGA GCTGTACGC GCTGTACGG GCTGTACGT GCTGTAAGA GCTGTAAGG GCTGTCCGA GCTGTCCGC GCTGTCCGG GCTGTCCGT GCTGTCAGA GCTGTCAGG GCTGTGCGA GCTGTGCGC GCTGTGCGG GCTGTGCGT GCTGTGAGA GCTGTGAGG GCTGTTCGA GCTGTTCGC GCTGTTCGG GCTGTTCGT GCTGTTAGA GCTGTTAGG cryptic exon exon31 NF1 gene ttttatagTGAGAATA A>G WT MUT La mutazione attiva un esone criptico (in rosso) Raponi M, Upadhyaya M, Baralle D. Functional splicing assay shows a pathogenic intronic mutation in neurofibromatosis type 1 (NF1) due to intronic sequence exonization. Hum Mutat. 2006; 27(3):294-295. cryptic exon exon31 NF1 gene Disruption of 5’ss restores normal splicing TAGataata TAGgtggga TAGgtaata CAGgtattg CAAgtattg CAAgtaagc CAAgtaagg La seq 2 ha un sito di splicing in 5’ più debole della seq 1. La seq 3 non ha il sito. Raponi M, Upadhyaya M, Baralle D. Functional splicing assay shows a pathogenic intronic mutation in neurofibromatosis type 1 (NF1) due to intronic sequence exonization. Hum Mutat. 2006;27(3):294-295. ATM gene structure 20 WT: GGCCAGGTAAGTGATA 20 mutations 21 21 DEL: GGCCAG____GTGATA MUT: GGCCAGGTCTGTGATA M WT del mut results A new type of mutation causes a splicing defect in ATM Pagani F, Buratti E, Stuani C, Bendix R, Dörk T, Baralle FE Nature Genetics 2002, 30: 426-429 20 20 21 21 Many elements regulate the splicing process exonic splicing enhancer ESE exonic splicing silencer ESS intronic splicing enhancer ISE intronic splicing silencer ISS A compact formalism, but… score matrix Compression and reconstruction of motifs Experimental assessed binding sites AGG AGT CGT AGG CGT zip consensus sequence A G G C T unzip AGG AGT CGG CGT Intron definition / exon definition Modello di exonic splicing enhancer mediato da proteine SR Modello di exonic splicing silencer elements promoting exons elements promoting introns ESE, ISS: esone ESS, ISE: introne PROTEINS REGULATING SPLICING STORED IN SPLICEAID 9G8, CUG-BP1, DAZAP1, ETR-3, Fox-1, Fox-2, FMRP, hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP C, hnRNP C1, hnRNP C2, hnRNP D, hnRNP D0, hnRNP DL, hnRNP E1, hnRNP E2, hnRNP F, hnRNP G, hnRNP H1, hnRNP H2, hnRNP I (PTB), hnRNP J, hnRNP K, hnRNP L, hnRNP LL, hnRNP M, hnRNP P (TLS), hnRNP Q, hnRNP U, HTra2alpha, HTra2beta1, HuB, HuD, HuR, KSRP, MBNL1, Nova-1, Nova-2, nPTB, PSF, RBM4, RBM25, Sam68, SAP155, SC35, SF1, SF2/ASF, SLM-1, SLM-2, SRp20, SRp30c, SRp38, SRp40, SRp54, SRp55, SRp75, TDP43, TIA-1, TIAL1, YB-1, ZRANB2 … Some comparisons among literature data (SpliceAid) and prediction tools SEQUENCE ACAAC SPLICEAID EXPERIMENTALLY ASSESSED BINDING YB-1 COMPETING TOOLS Splicing ESE Finder Rescue ESE Rainbow no binding no ESE SRp40 GAAGAAGA HTra2A, HTra2B1, SF2/ASF, SC35, no binding SRp40, SRp55, SRp75 CUGGCGUCGUCGC no binding UGACUG hnRNP A1 3 ESE Tra2B SF2/ASF, SRp55 2 ESE SRp40, SRp55 no binding no ESE SRp40, SRp55 UUUUAGACAA hnRNP C1, Sam68, hnRNP A1, hnRNP D, no binding hnRNP E1, hnRNP E2, SRp38 1 ESE hnRNP A2/B1, hnRNP C1/C2, hnRNP E1/E2, SRp40, SRp55, U2AF65 UGUGUGUGUGUGUGUGUG CUG-BP1, ETR-3, TDP43 no ESE hnRNP U SRp55 Pan troglodytes average nucleotide divergence of just 1.2% Suggested papers Nature reviews. Genetics. 2002; 3(4): 285-298 Listening to silence and understanding nonsense: exonic mutations that affect splicing. Cartegni L, Chew SL, Krainer AR. PMID: 11967553 Nature reviews. Genetics. 2007; 8(10): 749-761. Splicing in disease: disruption of the splicing code and the decoding machinery. Wang GS, Cooper TA. PMID: 17726481