Search for
Dark Matter
with GLAST
Aldo Morselli
INFN, Sezione di Roma 2 &
Università di Roma Tor Vergata
16 - August 2004
ICHEP'04 32nd International Conference on High Energy Physics
August 16 -Aldo22,
2004
Beijing,
Morselli,
INFN, Sezione
di Roma 2China
& Università di Roma Tor Vergata, [email protected]
1
What is the Universe made of ?
Bright stars: 0.5%
Baryons (total): 4.4% ± 0.4%
Matter: 27% ± 4%
Cold Dark Matter: 22.6% ± 4%
Neutrinos: < 0.15%
Dark Energy: 73% ± 6%
h=0.71 + 0.04 - 0.03
Baryons
Cold Dark
Matter
CDM
astro-ph 0007333
WMAP+SN+HST
astro-ph/0302209
Dark Energy
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
2
Neutralino WIMPs
Assume c present in the galactic halo
• c is its own antiparticle => can annihilate in galactic halo
producing gamma-rays, antiprotons, positrons….
• Antimatter not produced in large quantities through standard processes
(secondary production through p + p --> p + X)
• So, any extra contribution from exotic sources (c c annihilation) is an
interesting signature
• ie: c c --> p + X
• Produced from (e. g.) c c --> q / g / gauge boson / Higgs boson and
subsequent decay and/ or hadronisation.
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
3
Propagation Equation for Cosmic Rays in the Milky Way
convection velocity field that corresponds
to galactic wind and it has a cylindrical
symmetry, as the geometry of the galaxy.
It’s z-component is the only one different
from zero and increases linearly with the
distance from the galactic plane
diffusion
coefficient in the
impulse space,
quasi-linear MHD:
loss term: fragmentation
diffusion coefficient is function of rigidity
loss term: radioactive decay
primary spectra injection index
implemented in Galprop ( Strong & Moskalenko, available on the Web)
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
4
Propagation parameters uncertainties
•
•
•
Geometrical and dynamical parameters of the propagation
Pbar and Isotopes Production Cross Section ( ~ 20 % )
Gas distribution in the galaxy
•
Secondary to primary CR ratios are the most sensitive quantities to parameters
changing; B/C are measured with the highest statistic
•
Good fits of B/C experimental data constrain possible variations of the unknown
parameters; + consistency wit the other prim/sec CR ratios
•
Standard statistical test:
Heliospheric modulation z
(depends on rigidity)
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
(Perko,1997)
[email protected]
5
Enveloping curves of
all the good fits
of the experimental B/C
data
Dashed line:
Best fit
DR: diffusion
+
reacceleration
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
6
B/C ratio
Enveloping curves of
all the good fits
of the experimental B/C
data
DC
Dashed line: Best fit
DC: diffusion+convection
In DC model problem
with the ACE data at
low energy
DR
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
7
Allowed values for the propagation parameters for DR propagation
halo size
diffusion constant
prim spec
injection
diff index
index
Alfven velocity
Allowed values for the propagation parameters for DC propagation
halo size
upper
diff constant diff index
Vc gradient
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
injection indexes
[email protected]
8
Upper and lower bounds
of positron spectra due
to the uncertainties of
propagation parameters
in the case of DR model
30% under 1GeV
25% around 1GeV
around 15% at 10GeV
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
9
Upper and lower bounds
of antiproton spectra
due to the uncertainties
of propagation
parameters in the case of
DR model
from
10% - 13%
in all the
energy range
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
10
Prim/Sec
consistency check
for
DR model
Dashed:
(Sc+Ti+V)/Fe
spectra that
corresponds to the
best fit of B/C;
enveloping curves of
all fits that are
produced with good
parameters set
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
11
Distortion of the secondary antiproton flux induced by a signal from a heavy Higgsino-like neutralino.
Particles and photons are
sensitive to
different neutralinos.
Gaugino-like particles are
more likely to produce an
observable flux of
antiprotons whereas
Higgsino-like annihilations
are more likely to produce
an observable gamma-ray
signature
Background from normal
secondary production
Signal from 964 GeV
neutralino annihilations
(P.Ullio, astro-ph 9904086)
Caprice94 data from
ApJ, 487, 415, 1997
AMS98
Mass91 data from
XXVI ICRC, OG.1.1.21 ,
1999
Caprice98 data from
ApJ, 561, (2001), 787.
astro-ph/0103513
∆ BESS data from
BESS 00
Phys.Rev.Lett, 2000, 84, 1078
AMS: Phys Rep 366 6 2002 331
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
12
MASS
Matter Antimatter Space Spectrometer ( 89&91 )
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
13
The CAPRICE 94 flight
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
14
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
MASS 89 flight
[email protected]
15
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
MASS 89 flight
[email protected]
16
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
MASS 89
[email protected]
17
The PAMELA
Apparatus
ToF
TRD
Anticoincidence
shield
Shower tail catcher
scintillator
Magnetic
spectrometer
Calorimeter
Neutron Detector
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
18
PAMELA Status
Detectors are ready and
compling with the design performances
Detectors tested at PS / SPS
Test facilities as Prototypes
and in FM configuration
SPS, July 2000
FM
SPS, September 2003
Magnet/Tracker,
Calorimeter
SPS, July 2002
Integration of PAMELA FM
underway at INFN – Roma2
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
19
The Satellite: Resurs DK1
-
Soyuz-TM Launcher from
Baikonur
-
Launch in 2005
-
Lifetime >3 years
-
PAMELA mounted inside a
Pressurized Container,
attached to Satellite
-
Earth-ObservationSatellite
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
20
PAMELA Capabilities
PAMELA will explore:
Antiproton flux
80 MeV - 190 GeV
Positron flux
50 MeV – 270 GeV
Electron flux
up to 400 GeV
Proton flux
up to 700 GeV
Electron/positron flux up to 2 TeV
Light nuclei (up to Z=6)
up to 200 GeV/n
Antinuclei search
(sensitivity of 10-7 in He/He)
more on PAMELA:
http://wizard.roma2.infn.it/
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
21
The PAMELA Launch is on
February 2005 from Baikonur
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
22
antiproton
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
PAMELA
expectations
for three
years for
antiproton
spectra for DR
model
[email protected]
23
PAMELA
expectations
for three
years for
positron
spectra for DC
model
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
24
PAMELA: Cosmic-Ray Antiparticle Measurements: Antiprotons
Secondary production
A.M.and V.Z. with
Galprop, DC, Phi=550 Mv
Secondary production
A.M.and V.Z. with
Galprop, DR, Phi=550 Mv
Primary production
from cc annihilation
(m(c) ~ 1 TeV)
Ullio 99
Secondary production
Simon et al.
Aldoand
Morselli,
INFN, Sezione
di Roma 2 & Università di Roma Tor Vergata, [email protected]
updated from P. Picozza
A. Morselli,
astro-ph/0211286
25
Signal rate from Supersymmetry
gamma-ray flux from
neutralino annihilation
governed by
supersymmetric
parameters
J(j):
governed by
halo distribution
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
26
EGRET, E > 1GeV
Mayer-Hasselwander
et al, 1998
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
27
Poin source location
for GLAST~ 5 arcmin
1 pixel ~ 5 arcmin
0
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma0Tor Vergata,
[email protected]
28
2 x 2 field
IBIS/ISGRI 20–40 keV
20 x 20 field EGRET, E > 1GeV
Poin source location
for GLAST~ 5 arcmin
1 pixel ~ 5 arcmin
20Torx Vergata,
20 field
IBIS/ISGRI 20–40 keV
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma
[email protected]
29
EGRET data & Susy models
EGRET data
Nb=1.82 1021
Nc=8. 51 104
Typical Nc values:
NFW: Nc = 104
Moore: Nc = 9 106
Isotermal: Nc = 3 101
Annihilation channel W+WMc =80.3 GeV
background model(Galprop)
WIMP annihilation (DarkSusy)
Total Contribution
~2 degrees around the galactic center
Aldo Morselli,
Sezione F.
di Roma
2 & Università
di Roma
Tor Vergata, [email protected]
A.Morselli, A. Lionetto,
A. INFN,
Cesarini,
Fucito,
P. Ullio,
astro-ph/0211327
30
GLAST:
see
Monica Pepe talk
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
31
GLAST Expectation & Susy models
Nb=1.82 1021
Nc=8.51 104
Typical Nc values:
NFW: Nc = 104
Moore: Nc = 9 106
Isotermal: Nc = 3 101
~2 degrees around
the galactic center,
2 years data
Annihilation channel W+WMc =80 GeV
(Galprop)
(one example from DarkSusy)
A.Cesarini,
F.Fucito, A.Lionetto,
P.Ullio,
Astroparticle
Physics,
2004 [astro-ph/0305075]
astro-ph/0305075
Aldo Morselli,A.Morselli,
INFN, Sezione
di Roma
2 & Università
di Roma21,
Tor267-285,
Vergata, June
[email protected]
32
Estimated reaches with GLAST
Minimal Supersymmetric
Standard Model with:
A0 = 0, > 0, mt =174 GeV
region where
0.13 < CDM h
<1
region where
0.09 < CDM h
< 0.13
GLAST sensitivity (5 s) for a
neutralino density Nc of 104 in
a D=10-5 sr region around the
galactic center
if GLAST do not see Supersymmetry
this region is excluded for a NFW halo
Typical Nc values for
NFW: Nc = 104
Moore: Nc = 9 106
Isotermal: Nc = 3 101
D=10-5 sr :
mh0 <114.3 GeV GeV
A.Cesarini, F.Fucito,
A.Lionetto,
A.Morselli,
P.Ullio,
Astroparticle
21, 267-285,
June 2004 [astro-ph/0305075] 33
Aldo
Morselli, INFN,
Sezione di Roma
2 & Università
di RomaPhysics
Tor Vergata,
[email protected]
Estimated reaches with GLAST
Minimal Supersymmetric
Standard Model with:
A0 = 0, > 0, mt =174 GeV
region where
0.13 < CDM h
<1
region where
0.09 < CDM h
< 0.13
GLAST sensitivity (5 s) for a
neutralino density Nc of 104
in a D=10-5 sr region around
the galactic center
if GLAST do not see Supersymmetry
this region is excluded for a NFW halo
Typical Nc values for
NFW: Nc = 104
Moore: Nc = 9 106
Isotermal: Nc = 3 101
mh0 <114.3 GeV GeV
D=10-5 sr :
A.Cesarini, F.Fucito,
A.Lionetto,
A.Morselli,
P.Ullio,
Astroparticle
21, 267-285,
June 2004 [astro-ph/0305075] 34
Aldo
Morselli, INFN,
Sezione di Roma
2 & Università
di RomaPhysics
Tor Vergata,
[email protected]
Supersymmetry breaking
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
35
Mixed Anomaly mediated -gauge mediated model:
Tesi Alessandro Cesarini:
http://people.roma2.infn.it/~glast/Glast_thesis.html
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
36
Mixed Anomaly mediated -gauge mediated model:
Test with GLAST
AMSB-GMSB model
six free parameters
region where
0.1 < CDM h
< 0.3
Tachyons
Acc.Bounds
GLAST sensitivity for a
neutralino density Nc of 104 in
a D=10-5 sr region around the
galactic center
Typical Nc values:
NFW: Nc = 104
Moore: Nc = 9 106
Isotermal: Nc = 3 101
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
No EWSB
[email protected]
37
Cangaroo
Whipple
Hess
HESS Coll.
astro-ph/0408145
Cangaroo consistent
with ~ 2 TeV Mc
Hess > 12 TeV Mc
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
38
Conclusions
• GLAST will explore a good portion
of the supersymmetric parameter space
… and this is only an additional item for GLAST !
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
39
2nd Conclusions
 GLAST will be an important step in gamma ray astronomy
( ~10 000 sources compared to ~ 200 of EGRET)
 A partnership between High Energy Physics and g Astrophysics
 Beam test and software development well on the way
 Wide range of possible answers/discoveries
 Gold era for multiwavelenght studies
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
40
Extra slides
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
41
-2 -1
Integral flux (photons cm s )
10
Sensitivity of g-ray detectors
-7
5 sigma, 50 hours, > 10 events
10
EGRET
-8
AGILE
cal
10
AMS
-9
Crab Nebula
GLAST
10
-10
All sensitivities are at 5s.
Cerenkov telescopes
sensitivities
(Veritas, MAGIC,
Whipple, Hess, Celeste,
Stacee, Hegra)
are for 50 hours of
observations.
Large field of view
detectors sensitivities
(AGILE, GLAST,
Milagro, ARGO, AMS
are for 1 year of
observation.
CELESTE,
STACEE
MILAGRO
MAGIC
10
10
-11
ARGO
Whipple
-12
VERITAS
10
10
Large field of View experiments
Cerenkov detectors in operation
Past experiments
Future experiments
-13
-14
10
-1
10
0
Aldo Morselli 15/2/02
10
1
10
HEGRA
2
10
MAGIC sensitivity
based on the
availability
of high efficiency
PMT’s
HESS
3
10
4
Photon Energy (GeV)
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
42
Energy versus time for X and Gamma ray detectors
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
43
GLAST Performance
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
44
EGRET
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
AMS Cal
[email protected]
AMS Trk
45
Electron-Proton Separation (Calorimeter)
SPS Test
Beam Data:
p & e200 GeV/c
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
46
Differential yield
for each annihilation
channel
total yields
yields not due to p0decay
WIMP mass=200GeV
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
47
Differential yield
for b bar
neutralino mass
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
48
effective area
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
distribution of observing time
with inclination angle for the
declination of the Galactic
center. This is for a sky survey
with +/-35 deg rocking and with
the inclusion of
the loss of
exposure due to SAA (South
Atlantic Anomaly) passages. The
target direction was considered to
be viewable if its zenith angle was
no more than 105 deg. The
fractions are for one precession
period of the orbit (54.9 days). The
main numbers are :
Fraction of time in SAA: 0.142
Fraction of non-SAA time that
source is not occulted: 0.592 Net
fraction of time that source can be
observed: 0.508
The figure divides this fraction
into inclination angle ranges, the
sum of all values is 1
[email protected]
49
Distribution of Matter in Galaxy
Usual assumptions:
DM= 0.3 G eV/cm3, =10-3 ,
Truncated Maxwellian velocit y
distribution, vrms =270 km/s
From rotation curves
 c (r )
(r ) 
(r / a) g (1  (r / a)  ) ( g ) / 
a =core radius of halo

vS un =220 km /s
Isothermal profile
?
2
2
0
Navarro-Frenk-White 1
3
1
g =0 no cusp
Moore et al…
1.5 3
1.5
Kravtsov et al.(a)
Kravtsov et al.(b)
2
2
0.2
0.4
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
3
3
[email protected]
g
50
J(j):
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata,
[email protected]
51
Scarica

Aldo Morselli INFN, Sezione di Roma 2 & Universit di Roma Tor