Appunti di Elettrotecnica
APPUNTI DI ELETTROTECNICA
MOTORI ELETTRICI
TRIFASI
Guida Teorica e Pratica
A cura di Marco Dal Prà
www.marcodalpra.it
Versione n. 4.0 - Giugno 2013
Motori Elettrici Trifasi
Ver 4.0
Pag. 1 di 28
Appunti di Elettrotecnica
Indice
Definizioni........................................................................................................................................4
Introduzione......................................................................................................................................5
1
Macchine Elettriche Rotanti.....................................................................................................6
1.1
Generalità .............................................................................................................................6
1.2
Aspetti meccanici dei Motori Elettrici .................................................................................7
2
Campo Magnetico e Velocità ...................................................................................................8
2.1
Campo Magnetico Rotante...................................................................................................8
2.2
Velocità ................................................................................................................................8
3
Tipi di Motori Trifase.............................................................................................................10
3.1
Tipologie ............................................................................................................................10
3.2
Reversibilità .......................................................................................................................10
3.3
Motori Sincroni ..................................................................................................................11
3.4
Peculiarità delle Macchine Sincrone ..................................................................................11
3.5
Motori Asincroni ................................................................................................................12
3.6
Motore Asincrono con Rotore Avvolto..............................................................................12
3.7
Motore Asincrono con Rotore in Cortocircuito .................................................................13
4
Cenni di teoria del Motore Asincrono....................................................................................14
4.1
Introduzione........................................................................................................................14
4.2
Giri al Minuto.....................................................................................................................14
4.3
Flusso Magnetico ...............................................................................................................16
4.4
Coppia ................................................................................................................................17
5
Variazione della tensione di alimentazione............................................................................18
5.1
Introduzione........................................................................................................................18
5.2
Variazione della Tensione ..................................................................................................18
5.3
Variazione della Frequenza ................................................................................................18
5.4
Variazione combinata di Tensione e Frequenza.................................................................19
6
APPENDICI ...........................................................................................................................20
A. Motori elettrici ed Efficienza Energetica ...............................................................................21
B. Caratteristiche particolari delle Macchine Sincrone...............................................................22
C. A cose serve l’AVR ?.............................................................................................................24
D. Questione di Coppia ...............................................................................................................25
Motori Elettrici Trifasi
Ver 4.0
Pag. 2 di 28
Appunti di Elettrotecnica
Prefazione
Sul motore elettrico trifase esistono già moltissimi documenti, e soprattutto su quello asincrono.
Questa guida quindi potrebbe sembrare inutile, ma invece ha un approccio un po’ diverso dai libri
scolastici e dai testi specifici.
L’intenzione è di raccogliere tutte le nozioni, sia basilari che normative che di mercato, e di
confrontarle con l’utilizzo pratico del motore.
Si sono affrontate soprattutto le seguenti tematiche :
• Concetti base sui motori elettrici trifasi
• Concetti approfonditi legati all’azionamento dei motori mediante inverter;
• Problematiche meccaniche : la coppia
• Problematiche energetiche : l’efficienza.
• Concetti basilari sull’eccitazione dei motori sincroni, visto l’incremento della generazione
diffusa in Italia
Bibliografia :
• Mario Pezzi
Macchine Elettriche
2a. Ediz. - Zanichelli
• Bassi / Bossi
Elettrotecnica Pratica
Editorale Delfino Marzo 2000
• Principi base dei Motori Trifase a induzione Rockwell Automation Ott.1997*
• www.electroyou.it
Motori Elettrici Trifasi
Articoli di vari
Ver 4.0
Pag. 3 di 28
Appunti di Elettrotecnica
Definizioni
Al fine della presente guida valgono le seguenti definizioni :
Motore ad Induzione
Sinonimo di motore asincrono trifase, modo in cui viene chiamato prevalentemente in Italia; negli
altri paesi è chiamato più correttamente motore ad induzione (induction motor).
Frequenza
Cicli al secondo (si misura in Hertz); la frequenza unificata in Europa per i sistemi elettrici di
distribuzione in corrente alternata è di 50 Hz.
Nella presente guida sono considerati dispositivi alimentati a tale frequenza.
Bassa Tensione (B.T.)
Secondo la Norma CEI 64-8, sono considerati in Bassa Tensione gli impianti elettrici con tensione
inferiore a 1000 Volt in corrente alternata.
Il valore unificato per l’Europa per i sistemi di distribuzione pubblica in bassa tensione a corrente
alternata (= LV = Low Voltage) è di 230/400V.
Inverter
Termine generalmente usato in ambito industriale per identificare un dispositivo atto alla
regolazione della velocità dei motori elettrici in corrente alternata.
Sono dispositivi che, a partire dalla tensione di rete, generano una tensione a frequenza variabile che
viene applicata ai motori elettrici.
Vengono chiamati anche “Drive” o “variable-frequency drive” (VFD).
Nota : Questi dispositivi non devono essere confusi con gli inverter per la produzione di
energia elettrica come nel settore “Fotovoltaico”, che convertono la corrente continua
generata dai moduli fotovoltaici, in una corrente alternata alla frequenza di rete, cioè ad una
frequenza fissa.
Motori Elettrici Trifasi
Ver 4.0
Pag. 4 di 28
Appunti di Elettrotecnica
Introduzione
Il mercato dei motori elettrici oggi è dominato prevalentemente dal motore asincrono trifase a
gabbia, un tipo di motore molto semplice, robusto ed economico.
Il motore asincrono trifase negli anni ha guadagnato una fetta di mercato sempre maggiore,
occupando, grazie all’elettronica di controllo, anche settori che un tempo erano ad uso esclusivo dei
motori in corrente continua, che al contrario stanno quasi scomparendo.
Lo si vede anche dal mercato dei motori elettrici
in Italia (anni 2001-2004) che risulta suddiviso
(dati estratti dai fatturati delle imprese associate
ANIE), come numero di pezzi, indicativamente
:
• 80 %
Motori Asincroni in B.T.
• 16 %
Motori Brushless
• 4%
Motori in Corrente Continua
L’uso dei motori asincroni và dalle pompe ai ventilatori, dagli ascensori alle gru, dai compressori
d’aria ai gruppi frigoriferi, dai miscelatori ai trasportatori, ma la lista è interminabile in quanto nella
maggior parte delle applicazioni tecnologiche, sia industriali che del terziario, per ricavare energia
meccanica dall’energia elettrica si usano proprio questi motori.
Sul mercato sono reperibili numerosissimi modelli, e la gamma di potenza spazia da poche centinaia
di watt fino a motori che superano i 600 kW.
Tuttavia, come si vedrà più avanti, questi motori quando collegati alla rete hanno il “difetto” di
girare a velocità praticamente costante.
L’inverter è un dispositivo nato proprio per risolvere questo problema, ma per questo dispositivo si
rimanda ad un altro manuale.
Motori Elettrici Trifasi
Ver 4.0
Pag. 5 di 28
Appunti di Elettrotecnica
1
Macchine Elettriche Rotanti
1.1
Generalità
I motori elettrici, a prescindere dal tipo, fanno parte della grande famiglia delle macchine
elettriche, ed in particolare a quella delle macchine rotanti.
Si usa il termine “macchine” in quanto generalmente sono reversibili .
Si può capire meglio questo concetto con l’aiuto di alcuni esempi :
• I trasformatori possono essere usati per abbassare la tensione, ma anche per ottenere
l’effetto contrario, ossia di elevare una tensione.
• Un motore elettrico trasforma l’energia elettrica in meccanica, ma può essere usato per
trasformare l’energia meccanica in elettrica semplicemente applicando all’asse una
appropriata forza (il motore diventa generatore).
• Una macchina in corrente continua può essere chiamata Dinamo o Motore, ma il
fabbricante non può sapere se il suo cliente la utilizzerà per produrre energia elettrica o
per eseguire un lavoro meccanico.
Anche se talvolta le macchine rotanti hanno una progettazione leggermente diversa se usate
come generatori piuttosto che come motori, il concetto di reversibilità resta.
Macchine
Elettriche
Macchine
Rotanti
Trasfomatori
Macchine in
Corrente
Continua
Macchine in
Corrente
Alternata
Figura 1.1 - Suddivisione delle Macchine Elettriche
Come si vede in figura 1.1, per le macchine rotanti si individuano due grandi famiglie : le
macchine in corrente alternata e quelle in corrente continua.
In questa trattazione ci occuperemo di motori in corrente alternata, e più precisamente di
motori trifasi.
Motori Elettrici Trifasi
Ver 4.0
Pag. 6 di 28
Appunti di Elettrotecnica
1.2
Aspetti meccanici dei Motori Elettrici
I motori elettrici trifasi sono composti essenzialmente di due parti : lo statore ed il rotore.
Lo statore è la parte fissa nella quale sono inseriti i tre avvolgimenti primari, ai quali viene
applicata la tensione di alimentazione.
All’interno dello statore trova posto il rotore, che “trascinato” dal campo magnetico
generato degli avvolgimenti statorici, si pone in rotazione.
Figura 1.2 - Motore Elettrico Trifase di tipo Asincrono con rotore a gabbia.
Completano la nostra macchina rotante :
• la carcassa, che con le alette smaltisce il calore prodotto soprattutto dallo statore;
• la ventola, che provvede al raffreddamento, ma sottrae una piccola parte dell’energia
assorbita nelle cosiddette “perdite per ventilazione”,
• i due cuscinetti che reggono l’albero del motore, che anch’essi influiscono nel rendimento
con le “perdite meccaniche”
• la scatola di connessione, o morsettiera
• l’asse scanalato, nel quale si inserisce la “chiavetta” per il fissaggio con la macchina
operatrice.
Nota - Le “taglie” dei motori
I Motori elettrici si identificano dal punto di vista meccanico con un termine
denominato Grandezza.
La grandezza di un motore è semplicemente la misura, in millimetri, dell’altezza
della linea d’asse rispetto al piano di appoggio del motore.
Motori Elettrici Trifasi
Ver 4.0
Pag. 7 di 28
Appunti di Elettrotecnica
2
Campo Magnetico e Velocità
2.1
Campo Magnetico Rotante
Lo statore di un motore elettrico trifase è la parte fissa nella quale sono inseriti i tre
avvolgimenti primari, e ad essi viene applicata la tensione di alimentazione.
Come già detto, all’interno dello statore trova posto il rotore, che trascinato dal campo
magnetico generato dagli avvolgimenti statorici, si pone appunto in rotazione.
Quando ai tre avvolgimenti dello statore viene applicata una tensione alternata, infatti, nello
spazio all’interno si crea un Campo Magnetico Rotante.
N
S
In poche parole è come se il campo magnetico “alternato” prodotto dallo statore generasse
un magnete virtuale in rotazione.
All’interno dello statore è comunque possibile installare più “terne” di avvolgimenti
(montati sfalsati di un certo angolo), cosicché vengono generati più magneti virtuali, ossia
uno per ogni terna di avvolgimenti.
Nella terminologia specifica dei motori elettrici si dice che un motore con una terna di
avvolgimenti ha una Coppia Polare, o anche più semplicemente due poli.
2.2
Velocità
La velocità di rotazione di un motore dipende dal Campo Magnetico Rotante, che a sua volta
dipende dalla frequenza della tensione di alimentazione.
In pratica, per un motore con una coppia polare, applicando una tensione a 50 Hz si avrà una
velocità del rotore di 50 giri al secondo, ossia 3000 giri al minuto.
Quando invece lo statore è costituito da più coppie polari, il campo magnetico rotante non
gira più a 3000 Giri, ma a velocità inferiori, vista la presenza di altri poli magnetici, che
permettono al rotore di percorrere “meno spazio” prima di trovare il polo che lo attrae.
Motori Elettrici Trifasi
Ver 4.0
Pag. 8 di 28
Appunti di Elettrotecnica
Da ciò deriva la tabella fondamentale delle velocità dei motori trifasi a 50 Hz :
Numero di Poli
Coppie Polari
Velocità (giri/min.)
2
1
3000
4
2
1500
6
3
1000
8
4
750
10
5
600
12
6
500
20
10
300
30
15
200
ecc..
..
...
Tabella 2.1 - Tabella delle velocità del Campo Magnetico Rotante.
Tipicamente i costruttori hanno a catalogo motori a 2,4,6,8 poli, mentre per modelli con un
numero di poli superiore è necessario richiederne la costruzione su misura.
Nota - Le Coppie Polari e gli aspetti costruttivi
Il numero di coppie polari incide sugli aspetti costruttivi dello statore, soprattutto
dal punto di vista meccanico.
I motori con più coppie polari infatti, a parità di potenza, hanno una dimensione
dello statore maggiore di quelli con poche coppie polari.
Questo è visibile nei cataloghi, dove si può notare come a parità di potenza i
motori con più poli aumentano di “grandezza”.
Ricapitolando
Nello statore si trovano i due “fattori” che influiscono nella velocità di rotazione di un
motore , e cioè :
• la frequenza della tensione di alimentazione;
• le coppie polari, ossia il numero di “terne” di avvolgimenti che lo costituiscono.
Motori Elettrici Trifasi
Ver 4.0
Pag. 9 di 28
Appunti di Elettrotecnica
3
Tipi di Motori Trifase
3.1
Tipologie
I motori trifasi in corrente alternata in linea generale si dividono in due grandi famiglie:
motori sincroni e motori asincroni.
Come già detto nei capitoli precedenti, tutti i motori trifasi in corrente alternata sono
costituiti da uno statore, nel quale trovano spazio i tre avvolgimenti che tipicamente
alimentati alla tensione della rete.
Il rotore invece cambia in modo sostanziale da un tipo ad un’altro.
Nota : Talvolta si usa chiamare “indotto” il rotore ed “induttore” lo statore, ma questi
termini sono usati per i motori in corrente continua.
3.2
Reversibilità
In linea generale i motori trifasi in corrente alternata sono macchine reversibili.
Si intende cioè che se all’asse del motore si impone una forza che imprime una velocità
maggiore della velocità nominale (rispettando lo stesso verso di rotazione), il motore diventa
un generatore.
La macchina rotante quindi, in questo caso, anziché assorbire energia dalla rete inizierà ad
erogare energia verso la rete.
Questo comportamento è utile ad esempio per usare i motori come freno, scaricando
l’energia prodotta su di una resistenza (frequentemente usata con gli inverter).
C’è comunque da sottolineare una differenza fondamentale tra le macchine Sincrone e le
macchine Asincrone :
La macchina Sincrona quando diventa generatore, “produce” corrente e tensione, e
quindi è in grado di alimentare qualsiasi carico elettrico, sia resistivo che induttivo; è
cioè una macchina in grado di erogare sia corrente in fase con la tensione, che
sfasata, cioè di produrre sia energia attiva che energia reattiva.
Le macchine Asincrone, invece, quando utilizzate come generatori sono in grado di
produrre energia attiva, ma non di produrre energia reattiva, ed anzi hanno bisogno di
assorbire energia reattiva per poter funzionare, energia che tipicamente viene
assorbita dalla rete; non sono quindi in grado di alimentare utenze “in isola”, né di
regolare la tensione.
Motori Elettrici Trifasi
Ver 4.0
Pag. 10 di 28
Appunti di Elettrotecnica
3.3
Motori Sincroni
I motori sincroni sono macchine elettriche il cui rotore gira alla stessa velocità del campo
magnetico rotante; il rotore si muove quindi in “sincronia” con esso.
Sono usati per applicazioni molto particolari che richiedono elevata potenza e molta stabilità
nella velocità (cartiere, laminatoi, ecc.).
Il rotore è composto da uno o più avvolgimenti alimentati in corrente continua, detti di
eccitazione, che creano un campo magnetico “statico” che opponendosi al campo magnetico
rotante costringono il rotore a girare.
Sebbene da certi punti di vista sia la macchina “ideale”, dal punto di vista pratico non sono
consigliabili in quanto richiedono personale specializzato per la manutenzione, ma
soprattutto hanno costi elevati a causa della maggiore la complessità costruttiva.
Inoltre, per avviare una macchina sincrona è necessario utilizzare un motore ausiliario, detto
anche “di lancio”, per portare la macchina alla velocità di sincronismo prima di alimentarlo
con la tensione di rete, oppure deve essere avviato tramite un inverter.
Come già detto al capitolo precedente, queste macchine possono essere usate
indifferentemente come Motore o come Generatore (Alternatore), uso questo molto più
diffuso, come ad esempio nei Gruppi Elettrogeni.
Alternatore Sincrono STAMFORD HCI534F
3.4
Peculiarità delle Macchine Sincrone
Le macchine sincrone richiedono una trattazione particolare che non rientra tra gli scopi
della presente guida, ma in Appendice B è trattata brevemente una loro caratteristica molto
peculiare, nonché utile.
Motori Elettrici Trifasi
Ver 4.0
Pag. 11 di 28
Appunti di Elettrotecnica
3.5
Motori Asincroni
Il motore asincrono è una macchina elettrica nella quale il rotore gira ad una velocità diversa
da quella imposta del campo magnetico rotante; il rotore non ruota cioè in sincronismo, ma
ad una velocità leggermente inferiore.
Il nome corretto di questo motore, tuttavia, è motore ad induzione .
Il motore asincrono, infatti, a differenza di quello sincrono, non ha un sistema separato di
eccitazione che crea un campo magnetico sul rotore, ma si sfrutta appunto il fenomeno
dell’induzione per fare in modo che il campo magnetico rotante crei delle correnti nel rotore
che si oppongono allo stesso.
Il rotore inizia quindi a girare in quanto i campi magnetici dovuti alle correnti rotoriche sono
attratti (o respinti) dal campo magnetico dello statore.
Quindi, affinché funzioni, il rotore del motore asincrono deve “sottrarre” al Campo
Magnetico Rotante parte dell’energia per magnetizzarsi.
Da qui ne scaturisce una velocità reale inferiore a quella del campo magnetico rotante
(indicata nella precedente tabella), tipicamente del 3-5%.
Il motore asincrono trifase può essere costruito in due modi : con il rotore avvolto o con il
rotore in cortocircuito.
3.6
Motore Asincrono con Rotore Avvolto
In questo tipo di motore asincrono, oltre agli avvolgimenti dello statore, vi sono anche tre
avvolgimenti nel rotore (da qui appunto è detto a rotore avvolto - Wound rotor motor).
In questo motore, le correnti che circolano negli avvolgimenti rotorici, come detto, sono
indotte dal campo magnetico di statore.
Figura 3.1 - Motore Asincrono Trifase con rotore avvolto; a sinistra, i 3 anelli rotorici.
Motori Elettrici Trifasi
Ver 4.0
Pag. 12 di 28
Appunti di Elettrotecnica
E’ anche detto “Motore ad anelli”, in quanto il rotore è dotato di anelli conduttori ai quali
fanno capo i tre avvolgimenti rotorici.
Sugli anelli poi strisciano delle apposite spazzole, alle quali vengono collegati dei reostati
per regolare le correnti circolanti sul rotore, soprattutto all’avviamento, consentendo una
discreta regolazione della velocità.
I motori asincroni con il rotore avvolto erano utilizzati in passato in tutte le applicazioni di
notevole potenza dove era necessaria la regolazione della velocità, come gru, carriponte, ecc.
Questo tipo di motore, seppur ancora utilizzato in alcuni casi, presenta i seguenti
inconvenienti .
• ha bisogno di manutenzione a gli anelli ed alle spazzole,
• occupa uno spazio maggiore sia in grandezza che in lunghezza,
• è inefficiente perché dissipa l’energia inutilizzata su reostati.
Dato l’utilizzo sempre più diffuso di regolatori elettronici di velocità (inverter) per i motori
asincroni con rotore in cortocircuito, questi motori sono quasi scomparsi , anche se hanno
trovato nuova utilizzazione nelle torri eoliche di grande potenza (generatori DFIG).
3.7
Motore Asincrono con Rotore in Cortocircuito
Come detto in premessa, i motori elettrici più utilizzati in senso assoluto sono i motori
asincroni trifasi con il rotore in cortocircuito.
Il rotore di questi motori infatti è costituito da delle semplici sbarre chiuse in cortocircuito, e
per questo motivo viene detto anche “motore a gabbia di scoiattolo”.
Questo motore, grazie alla sua semplicità costruttiva, è utilizzato per la stragrande
maggioranza delle applicazioni , in quanto :
•
•
•
•
garantisce una buona robustezza,
non richiede manutenzione,
ha dei costi molto contenuti,
raggiunge rendimenti anche elevati (vedere appendice per gli standard in tema di
Efficienza Energetica).
In seguito, quando si parlerà di motore asincrono si intenderà il motore con rotore in
cortocircuito.
Motori Elettrici Trifasi
Ver 4.0
Pag. 13 di 28
Appunti di Elettrotecnica
4
Cenni di teoria del Motore Asincrono
4.1
Introduzione
Per capire meglio un azionamento in corrente alternata è necessario capire le formule base
che descrivono il funzionamento del motore trifase.
Prima di tutto vediamo l’aspetto velocità di rotazione.
4.2
Giri al Minuto
Come già visto, nel motore trifase il rotore è mantenuto in rotazione dal campo magnetico
rotante prodotto dalle correnti che circolano negli avvolgimenti trifasi dello statore.
La velocità del campo magnetico rotante è calcolabile con la seguente formula :
120 f
nS =
p
Dove :
n s = Numero di Giri al Minuto (del campo di statore)
f = frequenza di alimentazione
p= Numero di poli del motore
Si deduce quindi che per regolare la velocità di un motore, l’unica possibilità è quella di
variare la frequenza della tensione di alimentazione.
Esempio
Si prenda un motore a 2 poli, che alimentato 50Hz funziona a 3000 giri/min.
Se viene alimentato con una frequenza di 20 Hz questo funzionerà ad una
velocità (teorica) di :
n = 120 * 20 / 2 = 1200 giri/min.
Motori Elettrici Trifasi
Ver 4.0
Pag. 14 di 28
Appunti di Elettrotecnica
Nota - Lo Scorrimento
A differenza dei motori sincroni, nei motori ad induzione la velocità di rotazione
reale è leggermente inferiore a quella del campo magnetico rotante, ed è proprio
per questo motivo che vengono chiamati asincroni, perchè non girano in
“sincronismo” con esso.
Questo fenomeno è denominato scorrimento, e viene indicato con il simbolo s o
anche s%.
Per conoscere il numero di giri al minuto Nominale di uno specifico motore è
necessario consultare le caratteristiche fornite dal costruttore.
Indicativamente la velocità reale si discosta da quella calcolata di un 3% per i
grossi motori (oltre 100kW) fino al 6-7% per i motori di piccola taglia.
Detto questo sembrerebbe risolto il problema di come regolare la velocità di un motore
elettrico : basta un dispositivo che alimenti un motore con corrente alternata a frequenza
variabile a seconda delle esigenze dell’utente, e questo dispositivo è proprio l’inverter.
Tra l’altro alla luce della formula indicata, nulla toglie alla possibilità di alimentare il motore
con una frequenza superiore a quella di targa, per fargli così raggiungere delle velocità più
elevate.
Purtroppo però, come si vedrà a breve, ci sono altri parametri elettrici da controllare per
mantenere il funzionamento del motore entro le caratteristiche progettuali.
In particolare la frequenza incide notevolmente sulle reattanze e sul flusso magnetico per cui
è necessario ricorrere ad alcuni accorgimenti per garantire al motore le prestazioni
“meccaniche” nominali.
Motori Elettrici Trifasi
Ver 4.0
Pag. 15 di 28
Appunti di Elettrotecnica
4.3
Flusso Magnetico
Nel motore asincrono trifase il campo magnetico prodotto dagli avvolgimenti dello statore
genera un flusso magnetico che passa dallo statore al rotore attraverso il traferro*.
Tale flusso magnetico si calcola con la seguente formula :
V1
Φ=
K N1 f
Dove :
V1 = Tensione di Alimentazione
f = Frequenza di alimentazione
N1 = Numero di spire dell’avvolgimento di statore
K = Fattore dipendente da parametri costruttivi
Il valore del flusso magnetico nel motore viene stabilito dal costruttore in fase di
progettazione e di dimensionamento dei lamierini magnetici e di altre parti meccaniche del
motore.
Cambiare questo valore significa uscire dai valori di funzionamento del motore stesso, con il
rischio di ottenere un funzionamento anomalo.
Inoltre come si vede, nella formula è presente la Frequenza.
Questo significa che se si varia la frequenza con cui si alimenta il motore al fine di
modificare la velocità di rotazione si avrebbe come conseguenza :
• Per valori inferiori a 50 Hz - un aumento del flusso magnetico,
• Per valori superiori a 50 Hz - una diminuzione del flusso magnetico.
Come già detto, invece, per conservare inalterate le caratteristiche meccaniche del motore, è
necessario garantire che il flusso magnetico rimanga più vicino possibile al valore stabilito
dal costruttore.
E’ quindi necessario ricorrere a qualche altro parametro presente nella suddetta formula per
fare in modo che al variare della frequenza il flusso magnetico rimanga pressoché inalterato.
Dato che i parametri K ed N1 non sono modificabili in quanto insiti nel motore, l’unica
variabile che può essere usata per risolvere il problema è la tensione.
Per concludere quindi il motore trifase può essere controllato in frequenza a patto che il
rapporto
V/f
venga mantenuto il più costante possibile, in modo da assicurare che nel motore il flusso
magnetico si mantenga nei valori stabiliti dal costruttore.
*(lo spazio di ‘aria’ tra il rotore e lo statore)
Motori Elettrici Trifasi
Ver 4.0
Pag. 16 di 28
Appunti di Elettrotecnica
4.4
Coppia
La coppia che un motore imprime ad un carico è calcolabile con la formula :
60 P
C=
2 π n’
Dove :
P = Potenza Meccanica del Motore in Watt
n’ = Numero di giri al minuto effettivi
Questa formula però non ci dice nulla sulle caratteristiche “elettriche” del motore, e
soprattutto di come varia la coppia al variare dei parametri di alimentazione.
Per determinare la coppia nominale di un motore asincrono trifase, partendo dalle
caratteristiche elettriche, si può ricorrere alla seguente formula semplificata :
3p
Cn =
2π f2 R2
V2
f2
La prima parte della formula è costituita da parametri pressoché costanti per lo studio che
dobbiamo affrontare ora, quindi ci concentriamo sulla seconda parte, ossia sul rapporto della
tensione al quadrato diviso la frequenza al quadrato.
Per ottenere il calcolo del valore nominale ovviamente il costruttore ha utilizzato i valori di
tensione e di frequenza nominali.
Anche in questo caso mantenendo costante il rapporto V/f si mantiene costante la
caratteristica meccanica del Motore.
Motori Elettrici Trifasi
Ver 4.0
Pag. 17 di 28
Appunti di Elettrotecnica
5
Variazione della tensione di alimentazione
5.1
Introduzione
Vediamo ora cosa accade alimentando il motore con tensione e frequenza diversi da quelli
nominali.
5.2
Variazione della Tensione
Se varia il valore della tensione di alimentazione rispetto al valore nominale :
• Se la tensione è inferiore, la coppia diminuisce;
• Se si aumentasse la tensione, la coppia aumenterebbe, ma ciò non è possibile in quanto si
danneggerebbe l’isolamento degli avvolgimenti.
Molti sistemi di avviamento, per limitare la corrente di spunto, sono concepiti per alimentare
il motore ad una tensione più bassa di quella nominale.
Questo sistema, seppur valido, ha come controindicazione il fatto che la coppia diminuisce
in rapporto quadratico rispetto alla tensione, cosicchè talvolta questo sistema si dimostra
inutilizzabile.
Ad esempio con un sistema che riduce la tensione di 1/√3 (ovvero 230V anzichè 400V),
tipicamente il sistema Stella/Triangolo, si avrebbe che la coppia disponibile sarebbe molto
bassa, circa 1/3 di quella nominale.
5.3
Variazione della Frequenza
Se si varia la frequenza della tensione di alimentazione rispetto al valore nominale :
• Se la frequenza è inferiore, il motore riduce la velocità, ma la coppia aumenta;
• Se la frequenza aumenta, il motore accelera , ma la coppia diminuisce.
Questo funzionamento potrebbe essere deleterio dal punto di vista meccanico, soprattutto
per le frequenze basse, in quanto al momento dell’avviamento il motore avrebbe una coppia
elevatissima.
Ad esempio alimentando un motore a 2 Poli da 5,5 kW con una tensione di 400V a 10Hz si
avrebbe una coppia all’avviamento 5 volte più grande di quella nominale.
Questo comporterebbe inoltre delle correnti di spunto inammissibili per il motore stesso e
quindi sarebbe una possibilità non attuabile.
Motori Elettrici Trifasi
Ver 4.0
Pag. 18 di 28
Appunti di Elettrotecnica
5.4
Variazione combinata di Tensione e Frequenza
Applicando ad un motore una alimentazione con frequenza e tensione ridotte in modo
proporzionale tra loro, si ha una diminuzione nella velocità del motore, ma anche il
mantenimento della coppia entro lo stesso valore di quella nominale.
Questa è la soluzione ideale, in quanto questo significa che restano costanti le
caratteristiche meccaniche del motore.
U
Un
fn
f (Hz)
Figura 5.1 Grafico della legge teorica di variazione della tensione in funzione della
frequenza.
Motori Elettrici Trifasi
Ver 4.0
Pag. 19 di 28
Appunti di Elettrotecnica
6
APPENDICI
A.
Motori elettrici ed Efficienza Energetica
B.
Caratteristiche particolari delle Macchine Sincrone
C.
A cose serve l’AVR ?
D.
Questione di Coppia
Motori Elettrici Trifasi
Ver 4.0
Pag. 20 di 28
Appunti di Elettrotecnica
A.
Motori elettrici ed Efficienza Energetica
I comitati di unificazione internazionali nel 2008 hanno introdotto la Norma che definisce le classi
di rendimento per i motori trifase a bassa tensione fino a 375kW (IEC 60034-30).
Questa norma è stata introdotta vista la scadenza dell’accordo volontario tra i costruttori di motori
(CEMEP), che prevedeva le 3 classi di efficienza denominate EFF1, EFF2 ed EFF3, dove la classe
EFF1 indica il livello migliore.
Ora è stato introdotto il codice “IE” (Efficienza internazionale), che ha le seguenti classi :
IE1 – Rendimento Standard
(similare alla vecchia EFF2)
IE2 – Rendimento Elevato
(similare alla vecchia EFF1)
IE3 – Rendimento Premium
I motori di questo tipo sono riconoscibili proprio per la presenza di queste sigle nell’etichetta; per
approfondimenti vedere la Guida elaborata dall’ANIE.
Nota : i motori che l’accordo Cemep classificava come EFF3 oggi non sono più accettati, e non
possono essere immessi in commercio nei paesi dell’Unione Europea.
Perdite
Joule
Perdite
Addizionali
Perdite nel circuito magnetico
Perdite Meccaniche e di Ventilazione
50%
100%
% del Carico
Motori Elettrici Trifasi
Ver 4.0
Pag. 21 di 28
Appunti di Elettrotecnica
B.
Caratteristiche particolari delle Macchine Sincrone
Le macchine sincrone, a differenza da qualsiasi altra macchina elettrica, sono in grado di mutare le
loro caratteristiche elettriche, assumendo comportamenti propri di altri tipi di componenti.
In particolare la macchina sincrona, indifferentemente che stia funzionando come motore o come
alternatore, può avere un comportamento elettrico resistivo o capacitivo o induttivo, a seconda di
come si regola la corrente di eccitazione (Iecc),
Nota : La corrente di eccitazione è la corrente continua che viene immessa nell’avvolgimento
rotorico e può essere liberamente regolata dall’utilizzatore della macchina; tipicamente è generata
da un dispositivo statico detto “eccitatrice”, regolatore di tensione o AVR (vedere schema, fonte
Beltrame C.S.E.).
Si profilano sostanzialmente tre casi :
1. Se la corrente di eccitazione (Iecc) ha il valore “nominale”, il motore sincrono assorbe dalla rete
solamente energia attiva (cos φ = 1); vista dalla rete la macchina appare come un carico
puramente resistivo, e la corrente di magnetizzazione viene fornita interamente dal dispositivo
di eccitazione; questo assetto di funzionamento è quello che assicura il massimo rendimento.
Nota : allo stesso modo, se la macchina sincrona sta funzionando come generatore (alternatore),
eroga solamente energia attiva.
Motori Elettrici Trifasi
Ver 4.0
Pag. 22 di 28
Appunti di Elettrotecnica
2. Sottoeccitazione
Se la corrente di eccitazione (Iecc) ha un valore inferiore al valore nominale, la macchina
sincrona vista dalla rete appare come un carico ohmico induttivo, causando un assorbimento di
corrente in ritardo rispetto alla tensione.
In tal caso a parità di potenza attiva, aumenta la corrente e quindi le perdite nel rame.
Ad esempio
cos φ = 0,8 in ritardo
(in inglese lagging)
Nota : da un punto di vista pratico, tale fenomeno è abbastanza ovvio: diminuendo la corrente
di eccitazione la macchina sincrona non ha sufficiente energia reattiva induttiva per
magnetizzare i propri circuiti magnetici e quindi è “costretta” a richiamarla dalla rete.
Se la macchina sincrona venisse fatta funzionare senza un carico meccanico fino quasi ad
azzerare l’assorbimento di energia attiva, assorbirebbe corrente sfasata i ritardo di 90°.
3. Sovraeccitazione
Se la corrente di eccitazione (Iecc) ha un valore superiore al valore nominale, la macchina
sincrona vista dalla rete appare come un carico ohmico-capacitivo, e si avrà un assorbimento di
corrente in anticipo rispetto alla tensione.
Ad esempio
cos φ = 0,8 in anticipo
(in inglese leading)
In conclusione le macchine sincrone, indipendentemente se stanno funzionando da motore o da
generatore, hanno la possibilità di assumere anche le caratteristiche “elettriche” delle induttanze o
dei condensatori.
In particolare la “sovraeccitazione” delle macchine sincrone è utile perché può essere usata per
rifasare la rete senza ricorrere a condensatori statici.
Motori Elettrici Trifasi
Ver 4.0
Pag. 23 di 28
Appunti di Elettrotecnica
C.
A cose serve l’AVR ?
Nelle macchine sincrone, solitamente viene installato
un dispositivo elettronico di eccitazione denominato
regolatore automatico della di tensione o meglio
Automatic Voltage Regulator o AVR.
Vediamo brevemente come funziona.
Negli Alternatori
Nelle macchine sincrone generatrici lo scopo dell’AVR è quello di mantenere stabile la tensione in
uscita, che viene rilevata sui morsetti statorici; è il caso dei gruppi elettrogeni di emergenza.
Quando un alternatore alimenta un carico induttivo, cosa accade all’interno dei poli magnetici ?
Sostanzialmente la corrente sfasata in ritardo che percorre gli avvolgimenti dello statore contrasta il
campo magnetico induttore facendo un’azione di smagnetizzazione sul rotore; questo fenomeno
provoca un calo della tensione ai morsetti di uscita dell’alternatore.
Per compensare il fenomeno il regolatore di tensione interviene automaticamente aumentando la
corrente di eccitazione per riportare la tensione in uscita ai valori nominali.
Viceversa se il carico è capacitivo la corrente agisce in modo “magnetizzante” su rotore/induttore e
causa un aumento della tensione in uscita; l’AVR in tal caso opera riducendo la corrente di
eccitazione.
Negli Alternatori connessi in parallelo con la rete
Nelle macchine sincrone generatrici connesse alla rete lo scopo dell’AVR è leggermente diverso :
serve per mantenere costante il fattore di potenza con il quale funziona la macchina (ad esempio
Cos φ = 0,9), visto che la tensione è imposta dalla rete.
Tipicamente il fattore di potenza stabilito dall’ente gestore della rete pubblica, e può cambiare con
gli orari o con i giorni della settimana.
Nei Motori Sincroni
Nei motori sincroni lo scopo dell’AVR tipicamente è quello di mantenere il funzionamento della
macchina costante e soprattutto nel regime di maggior rendimento.
Solitamente significa mantenere il fattore di potenza a valori prossimi ad 1, ma potrebbe essere
regolato a valori diversi se si utilizza la macchina sincrona anche per rifasare altre utenze presenti
nello stesso insediamento.
Motori Elettrici Trifasi
Ver 4.0
Pag. 24 di 28
Appunti di Elettrotecnica
D.
Questione di Coppia
La coppia è una unità di misura che esprime la forza che un motore imprime al proprio asse, ossia al
carico meccanico, quindi è un parametro fondamentale per conoscere le caratteristiche meccaniche
del motore.
L’ unità di misura della coppia nel Sistema Internazionale è il Newton per Metro (Nm), mentre
inizialmente si usavano i kgm (chilogrammetri o chilogrammi metro).
In una macchina si identificano due “coppie” :
• Cm
Coppia Motrice - La coppia che imprime il motore ;
• Cr
Coppia Resistente - La coppia del carico meccancio che si
oppone alla coppia motrice (detta anche coppia di carico);
La coppia resistente, come la coppia motrice, non è sempre costante, ma varia a seconda della
velocità di rotazione del motore.
Vediamo dei tipici casi di Coppia resistente a seconda del tipo di macchina, con dei grafici che
esprimono la coppia di carico in funzione della velocità.
C.1
Macchine a Coppia Costante
Nelle macchine a coppia resistente costante la coppia è indipendente dalla velocità. Ciò accade, ad
esempio, negli apparecchi di sollevamento, dato che il peso sollevato è costante.
•
•
•
•
•
•
•
•
•
•
•
•
Gru, Argani, Ascensori
Seggiovie e funivie
Nastri trasportatori, Coclee
Pompe volumetriche a pistoni o ingranaggi
Compressori a pistoni a pressione costante
Rettificatrici, Piallatrici
Macchine continue per la carta
Macchine continue di stampa
Macchine rotative tessili
Mescolatori
Laminatoi
Avvolgitrici a tiro costante
C
C = Cost
P≅n
n (rpm)
Nel grafico è indicata anche la Potenza, che cresce in modo proporzionale con la velocità.
Motori Elettrici Trifasi
Ver 4.0
Pag. 25 di 28
Appunti di Elettrotecnica
C.2
Macchine a Coppia Crescente
In queste macchine la coppia resistente aumenta in modo proporzionale con la velocità.
•
•
•
•
Presse meccaniche e idrauliche,
Calandre
Freni elettromagnetici
Estrusori
C
C ≅n
P = n2
n (rpm)
C.3
Macchine a Coppia Decrescente
In queste macchine la coppia resistente è elevata a bassa velocità e decresce all’aumentare della
velocità.
•
•
•
•
•
Torni
Alesatrici
Fresatrici
Piallatrici per legno
Avvolgitrici, Bobinatrici
C
C = 1/n
P = Cost.
n (rpm)
Motori Elettrici Trifasi
Ver 4.0
Pag. 26 di 28
Appunti di Elettrotecnica
C.4
Macchine a Coppia Quadratica
In queste macchine la coppia resistente è in rapporto quadratico rispetto alla velocità.
E’ il caso tipico delle macchine che lavorano con fluidi (liquidi o aeriformi).
• Ventilatori e ventole di ogni tipo
• Eliche
• Macchine a pistoni con erogazione in
rete aperta
• Pompe Centrifughe
• Pompe Assiali
• Compressori a vite
• Agitatori,
• Centrifughe
• Veicoli.
C
P = n3
C ≅ n2
n (rpm)
Nota : tipicamente nelle macchine che spingono fluidi, la portata è in rapporto “al cubo” rispetto
alla velocità.
Motori Elettrici Trifasi
Ver 4.0
Pag. 27 di 28
Appunti di Elettrotecnica
COPYRIGHT - Proprietà del Documento
Cosa si può fare
Il documento può essere liberamente utilizzato e distribuito per scopi didattici sia da parte di studenti che di
docenti di scuole pubbliche di ogni grado, e di corsi di specializzazione pubblici.
Può essere liberamente stampato per uso personale da chiunque sia interessato ad approfondire l’argomento
in proprio.
Cosa non si può fare
Il documento non può essere utilizzato ai fini di lucro come ad esempio da parte di società private che a
qualsiasi titolo tengano corsi di aggiornamento e/o di specializzazione.
Per tali finalità è possibile prendere accordi che dovranno essere formulati in forma scritta da entrambe le
parti.
Esclusione di Responsabilità
I contenuti del presente documento sono utilizzabili così come sono.
Nonostante i controlli fatti prima di renderlo di pubblico dominio nel sito internet, non è possibile assicurare
che il documento sia esente da errori e/o omissioni.
Nessuna responsabilità può essere attribuita all’autore del documento per l’utilizzo dello stesso.
Note
I marchi citati nel presente documento sono di proprietà dei relativi produttori.
Aggiornamenti
I presente documento può essere aggiornato dall’autore a sua discrezione e senza alcun preavviso.
Ad esempio l’autore può decidere di effettuare un aggiornamento sulla base di libere segnalazioni fatte dai
lettori, all’indirizzo [email protected] . In ogni caso, ciò non avviene a cadenza periodica.
Per verificare la presenza di una versione più aggiornata consultare il sito www.marcodalpra.it .
Motori Elettrici Trifasi
Ver 4.0
Pag. 28 di 28
Scarica

MOTORI ELETTRICI TRIFASI